HOMEWORK 3, DUE FRIDAY JANUARY 31ST, 12PM

1. (a) Show that the function

$$
M: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1} \quad \text { given by } \quad M(z)=\frac{2 i z+1-i}{2 z-1+i}
$$

takes 0 to $-1,1$ to 1 and ∞ to i.
(b) Show that M does not take the real line, the line $y=0$, to a line.
(c) Assuming that M sends lines and circles to lines and circles, show that M takes the real line to the unit circle.
(d) Check this by direction calculation.
2. Write down a Möbius transformation that takes 0 to 1,1 to $1+i$ and ∞ to 2 .
3. Show that

$$
e^{\bar{z}}=\overline{e^{z}} .
$$

4. Find the images of the following regions under the exponential map, $z \longrightarrow e^{z}$:
(a)

$$
\{z \in \mathbb{C} \mid 0<\operatorname{Re}(z)<1\}
$$

(b)

$$
\{z \in \mathbb{C}||z| \leq \pi / 2\}
$$

(c)

$$
\{z \in \mathbb{C}||z| \leq \pi\}
$$

(d)

$$
\{z \in \mathbb{C}||z| \leq 3 \pi / 2\}
$$

5. Calculate
(a) $\log (2)$
(b) $\log (i)$
(c) $\log (1+i)$
(d) $\log (1+i \sqrt{3}) / 2$.

Challenge Problems: (Just for fun)
6. (a) If

$$
M: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1} \quad \text { given by } \quad M(z)=\frac{a z+b}{c z+d}
$$

is a Möbius transformation then show that the matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is an invertible 2×2 matrix with complex entries. (The matrix A isn't unique, as we can rescale a, b, c and d; in practice this doesn't matter) (b) If M and N are two Möbius transformations and A and B are two associated matrices then show that the composition $M \circ N$ of M and N is the Möbius transformations given by the matrix product $A B$ (there isn't really a better way to do this other than direct computation).
(c) Show that every Möbius transformation is invertible, that the inverse is a Möbius transformation, and give a simple formula for this Möbius transformation.

