HOMEWORK 5, DUE FRIDAY FEBRUARY 14TH, 12PM

1. Show that the following functions are holomorphic and calculate their derivatives $f^{\prime}(z)$:
(a)

$$
f(z)=\left(2 z^{2}+1\right)^{5}
$$

(b)

$$
f(z)=\frac{z-1}{2 z+1} \quad \text { on the region } \quad z \neq-\frac{1}{2}
$$

(c)

$$
f(z)=\frac{\left(1+z^{2}\right)^{4}}{z^{2}} \quad \text { on the region } \quad z \neq 0
$$

(d)

$$
f(z)=\tan z=\frac{\sin z}{\cos z} \quad \text { on the region } \quad \cos z \neq 0
$$

(e)

$$
\begin{equation*}
f(z)=\cosh (z) \tag{f}
\end{equation*}
$$

$$
f(z)=\sinh (z)
$$

2. Show that $f(z)=\bar{z}$ is not holomorphic.
(a) Using the definition.
(b) Using the Cauchy-Riemann equations.
3. Let $f(z)=u(z)+i v(z)$ be a holomorphic function, where u and v are real valued. If we put $z=r e^{i \theta}$ into polar coordinates then

$$
u(r, \theta)=u\left(r e^{i \theta}\right) \quad \text { and } \quad v(r, \theta)=v\left(r e^{i \theta}\right)
$$

become functions of r and θ.
(a) Derive the polar form of the Cauchy-Riemann equations:

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}
$$

(b) Check that the functions

$$
u(r, \theta)=r^{m} \cos (m \theta) \quad \text { and } \quad v(r, \theta)=r^{m} \sin (m \theta)
$$

satisfy the polar form of the Cauchy-Riemann equations, where m is an integer.
4. Let f be a bounded holomorphic function on a bounded region U. If f is one to one (or injective) then show that the area of the image $f(U)$ of U is

$$
\iint_{U}\left|f^{\prime}(z)\right|^{2} \mathrm{~d} x \mathrm{~d} y
$$

Challenge Problems: (Just for fun)
5. We are going to go through Euler's derivation of the value of $\zeta(2)$.
(a) What are the roots of

$$
\sin (\pi z)=0 ?
$$

(b) If $p(z)$ is a polynomial with roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ it follows that

$$
p(z)=\alpha\left(1-\frac{z}{\alpha_{1}}\right)\left(1-\frac{z}{\alpha_{2}}\right) \ldots\left(1-\frac{z}{\alpha_{n}}\right)
$$

where α is a complex number (we divide through by the product of the roots for convergence of the infinite product below). Assuming the same sort of result holds for $\sin (\pi z)$, find an infinite product expansion for $\sin (\pi z)$.
(c) Grouping positive and negative roots together, conclude that

$$
\sin (\pi z)=\pi z\left(1-\frac{z^{2}}{1}\right)\left(1-\frac{z^{2}}{4}\right)\left(1-\frac{z^{2}}{9}\right), \ldots
$$

(d) Multiply out the RHS of (c) to get the power series for $\sin (\pi z)$.
(e) Compare coefficients of z^{3} to get a formula for $\zeta(2)$.

