HOMEWORK 6, DUE FRIDAY FEBRUARY 21ST, 12PM

1. Let $f: U \longrightarrow \mathbb{C}$ be a holomorphic function. Show that f is constant if
(a) the real part of f is constant.
(b) the imaginary part of f is constant.

You may use the fact that if u is a real valued function on U such that

$$
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0
$$

on U then u is constant.
2. Let

$$
h:[0,1] \longrightarrow \mathbb{C}
$$

be a continuous complex valued function defined on the unit interval $[0,1]$. Define a function

$$
f: U \longrightarrow \mathbb{C} \quad \text { by the rule } \quad f(z)=\int_{0}^{1} \frac{h(t)}{t-z} \mathrm{~d} t
$$

where U is the region $\mathbb{C} \backslash[0,1]$.
Show that f is holomorphic on U by using the limit definition of the derivative. What is $f^{\prime}(z)$?
3. Sketch the families of level curves for the following functions $f=$ $u+i v$.
(a)

$$
f(z)=\frac{1}{z}
$$

(b)

$$
f(z)=\frac{1}{z^{2}} .
$$

(c)

$$
f(z)=z^{6} .
$$

Determine where $f(z)$ is conformal and where it is not conformal.
4. Suppose that P and Q are two functions on the annulus

$$
V=\{z \in \mathbb{C}|a<|z|<b\}
$$

which have continuous partial derivatives. If

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

then show that the integral

$$
\int_{\gamma_{r}} P \mathrm{~d} x+Q \mathrm{~d} y
$$

is independent of r, where γ_{r} is the circle of radius $r \in(a, b)$ centred at the origin and we traverse γ_{r} counterclockwise.
5. Compute

$$
\int_{\gamma} \frac{z+2}{z} \mathrm{~d} z
$$

when
(a) γ is the semicircle of radius 2 centred at the origin in the upper half plane.
(b) γ is the semicircle of radius 2 centred at the origin in the lower half plane.
(c) γ is the circle of radius 2 centred at the origin.

All arcs are traversed counterclockwise.
6. Show that if U is a bounded region with smooth boundary then the area of U is given by the integral

$$
\frac{1}{2 i} \int_{\partial U} \bar{z} \mathrm{~d} z
$$

Challenge Problems: (Just for fun)

1. (continued)
(c) the modulus of f is constant.
(d) the argument of f is constant.
2. (Circles of Appolonius) Fix two points a and b in \mathbb{C}.
(a) Fix a positive real l. Show that loci of points z such that the ratio between the distance to a and the distance to b is l is a circle C_{1}.
(b) Let C_{2} be a circle containing a and b. Show that C_{1} and C_{2} are orthogonal circles.
(Hint: Use Möbius transfermations.)
