HOMEWORK 7, DUE FRIDAY FEBRUARY 28TH, 12PM

1. Let $h(z)$ be a continuous function on a curve $\gamma:[\alpha, \beta] \longrightarrow \mathbb{C}$. Define a function

$$
f: U \longrightarrow \mathbb{C} \quad \text { by the rule } \quad f(z)=\int_{\gamma} \frac{h(w)}{w-z} \mathrm{~d} w
$$

where U is the region $\mathbb{C} \backslash \gamma$, the complement of the image of γ. Show that f is holomorphic on U by using the limit definition of the derivative. What is $f^{\prime}(z)$?
2. Evaluate the following integrals:
(a)

$$
\oint_{|z|=2} \frac{z^{n}}{z-1} \mathrm{~d} z,
$$

where $n \geq 0$ is an integer.
(b)

$$
\oint_{|z|=1} \frac{z^{n}}{z-2} \mathrm{~d} z,
$$

where $n \geq 0$ is an integer.
(c)

$$
\oint_{|z|=1} \frac{\sin z}{z} \mathrm{~d} z .
$$

(d)

$$
\oint_{|z|=1} \frac{\cosh z}{z^{3}} \mathrm{~d} z .
$$

(e)

$$
\oint_{|z|=1} \frac{e^{z}}{z^{m}} \mathrm{~d} z,
$$

where m is an integer.
(f)

$$
\oint_{|z-1-i|=5 / 4} \frac{\log z}{(z-1)^{2}} \mathrm{~d} z
$$

(g)

$$
\oint_{|z|=1} \frac{\mathrm{~d} z}{z^{2}\left(z^{2}-4\right) e^{z}},
$$

(h)

$$
\oint_{|z-1|=2} \frac{\mathrm{~d} z}{z^{2}\left(z^{2}-4\right) e^{z}} .
$$

3. Show that

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} e^{-i t x} \mathrm{~d} x=e^{-t^{2} / 2}
$$

for any real number t, by integrating $e^{-z^{2} / 2}$ around the rectangle with vertices $\pm R$ and $\pm R+i t$ and letting R go to infinity.
4. Let f be a holomorphic function on a region U and let u be the real part of f, so that u is a real valued function on U.
Let $a \in U$ and suppose that the closed disk of radius ρ centred about a is contained in U. Show that

$$
u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+\rho e^{i \theta}\right) \mathrm{d} \theta
$$

This is known as the mean value property of harmonic functions.
Challenge Problems: (Just for fun)
4. (continued). Show that if u achieves its maximum, or minimum, on U then u is constant.
5. Prove the fundamental theorem of algebra using the following line of proof.
Let $p(z)$ be a polynomial with no zeroes on \mathbb{C}. Our goal is to show that p is a constant polynomial.
We may write

$$
p(z)=p(0)+z q(z)
$$

for some polynomial $q(z)$. Divide this expression by $z p(z)$ and integrate around a large circle.

