HOMEWORK 8, DUE FRIDAY MARCH 6TH, 12PM

1. Let f be an entire function. If the real part of f is bounded from above then show that f is constant. (Hint: consider $e^{f(z)}$.)
2. Suppose that f is an entire function such that $f(z) / z^{n}$ is bounded for $|z| \geq R$. Show that f is a polynomial of degree at most n.
3. Expand the following functions in power series about ∞ :
(a)

$$
\frac{1}{z^{2}+1}
$$

(b)

$$
\frac{z^{2}}{z^{3}-1}
$$

(c)

$$
e^{1 / z^{2}}
$$

(d)

$$
z \sinh (1 / z)
$$

4. Let E be a closed bounded subset of the complex plane \mathbb{C} over which area can be defined and set

$$
f(w)=\iint_{E} \frac{\mathrm{~d} x \mathrm{~d} y}{w-z} \quad \text { where } \quad w \in U=\mathbb{C} \backslash E
$$

and $z=x+i y$. Show that f is holomorphic at ∞ and find a formula for the coefficients.
5 . Find the zeroes and their orders of the following functions:
(a)

$$
\frac{z^{2}+1}{z^{2}-1}
$$

(b)

$$
\frac{1}{z}+\frac{1}{z^{5}} .
$$

(c)

$$
z^{2} \sin z
$$

Challenge Problems: (Just for fun)
6. Consider the power series

$$
\sum_{n} z^{n!}=z+z^{2}+z^{6}+z^{24}+z^{120}+\ldots
$$

Show that the radius of convergence is one so that

$$
f(z)=\sum_{n} z^{n!}
$$

is a holomorphic function on the open unit disk. On the other hand show that

$$
\lim _{r \rightarrow 1}|f(r \omega)|=\infty
$$

where ω is any root of unity and r approaches 1 from below.
7. If f is an entire function and f omits all of the values in a non-empty open disk then show that f is constant.

