
1. Compare and contrast

Complex numbers were first introduced to solve quadratic equations:

ax2 + bx + c = 0 has solutions x =
−b±

√
b2 − 4ac

2a
.

If b2−4ac < 0 the square root is not a real number. But if we introduce
a square root of −1,

i =
√
−1 so that i2 = −1

then the quadratic formula gives all of the solutions to every quadratic
equations.

From this perspective, complex numbers z = x + iy just seem like a
convenience. On the other hand, the same can be said of the number 0,
negative numbers and fractions and of course these numbers now seem
indispensible.

We will see in this course, time and again, that curious looking coin-
cidences in the real setting will make much more sense in the complex
setting.

Complex numbers also seem indispensible to describe the “real”
world. In fact, quantum mechanics, which describes how electrons and
photons behave (and everything else at this length scale and smaller),
can only really be expressed in terms of complex numbers. To move in
ordinary space, to decide how to get from a to b, photons use complex
numbers.

Real numbers are useful for calculus, for taking limits (this doesn’t
work very well for rational numbers). Similarly one can differentiate
and integrate complex functions.

However ordinary calculus has a dirty secret. Most of the time,
everything goes wrong. The calculus of complex functions is completely
the opposite, everything works like a dream.

For example it is easy to write down a continuous real function which
is not differentiable at a point. Start with the function

H(x) =

{
0 x ≤ 0

1 x > 0.

This is called the Heaviside step function. H is a function from the
real line to the real line:

H : R −→ R.
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If you integrate H you get the function

f(x) =

{
0 x ≤ 0

x x > 0.

Note that

f : R −→ R

is continuous. The two pieces x −→ 0 and x −→ x are continuous and
they agree at the origin. Integration tends to make functions “smoother
”.

If you differentiate f then you get H (the fundamental theorem of
calculus). But H is not continuous at the origin and it is clear that
f is not differentiable at the origin, even though it is differentiable
everywhere else.

One can take this example and make it worse. Suppose you integrate
H twice, that is, you integrate f once to get

g : R −→ R

given by

g(x) =

{
0 x ≤ 0
x2

2
x > 0.

Then g is continuous, its derivative is f , which is continuous but the
second derivative of g exists everywhere and is continuous, except at
the origin, where the second derivative does not exist.

Of course, we can repeat this process ad infinitum, to get

fn : R −→ R

given by

fn(x) =

{
0 x ≤ 0
xn

n!
x > 0.

Then the derivative of fn is fn−1. In particular it follows that f0(x) =
H(x), f1(x) = f(x) and f2(x) = g(x). Thus fn(x) can be differentiated
n− 1 times but it cannot be differentiated n times.

By contrast, if

f : C −→ C

is a complex function, which is holomorphic, meaning f has one deriv-
ative which is continuous, then f is infinitely differentiable (sometimes
called smooth).
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The problem is that the situation for real functions is far worse than
this. Recall that many functions in calculus have a power series expan-
sion, sometimes called a Maclaurin or Taylor series. For example,

ex = 1 + x +
x2

2
+

x3

3!
+ . . .

sinx = x− x3

3!
+

x5

5!
+ . . .

cosx = 1− x2

2!
+

x4

4!
+ . . . .

Power series are very useful. One can use them to compute the value
of a function with arbitrary precision (and enough patience, or at least
access to a good computer). You can write down the derivative or
integral of a power series, just do it term by term.

They are the next best thing to polynomials.
The problem is that there are infinitely differentiable real functions

whose Taylor series is not equal to the original function.
For example, suppose we start with the function

x −→ e−1/x
2

.

I claim this gives an infinitely differentiable function

f : R −→ R.
The statement is surely okay outside the origin, since

x −→ 1

x2

is an infinitely differentiable function away from the origin,

x −→ ex

is infinitely differentiable everywhere, and the composition of infinitely
differentiable functions is infinitely differentiable (using the chain rule).

What happens at the origin? As x→ 0, 1
x2 →∞ and so − 1

x2 → −∞.
It follows that

lim
x→0

e−1/x
2

= 0,

so that the limit exists and is equal to zero. It is natural then to define

f(x) =

{
e−1/x

2
x 6= 0

0 x = 0,

and with this definition we get a continuous function. What happens
when we differentiate? Outside the origin we get the function

x −→ 2

x3
e−1/x

2
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If we consider the limit as x→ 0 we again get zero (since exponential
always beats polynomial). Thus if we define

f1 : R −→ R
by the rule

f1(x) =

{
2
x3 e
−1/x2

x 6= 0

0 x = 0,

then f1(x) is the derivative of f(x). Continuing in this way, it is not
hard to see that the function

fn : R −→ R
defined by the rule

fn(x) =

{
pn(x)
xmn e−1/x

2
x 6= 0

0 x = 0,

for an appropriate polynomial pn(x) and an appropriate power xmn of
x, is continuous and it is the derivative of fn−1.

It follows that f is infinitely differentiable. What is the Taylor series
of f at zero, that is, what is its Maclaurin series? Since all the deriva-
tives of f are zero at the origin the coefficients of the Taylor series are
all zero and the Taylor series of f is the zero power series.

But f is not the zero function. For example,

f(1) =
1

e
6= 0.

In fact
lim

x→±∞
f(x) =∞.

We say a function is analytic if it has a power series expansion, or
what comes to the same thing, if it it is equal to its Taylor series.

Most real functions are not analytic, even when they are infinitely
differentiable. By contrast every holomorphic function is analytic, that
is, every complex function which has one continuous derivative auto-
matically has a power series expansion.

We will see later that one can integrate holomorphic (or more gen-
erally complex) functions along paths (that is, we can compute line
integrals). This story is too rich to explain now but let me mention
two things. Firstly one can use complex integrals to compute definite
integrals of real functions, even those whose integrands are not the
derivative of an elementary function.

Secondly, since the paths are in the complex plane, topology starts
to play a very interesting role in the whole story.
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