
13. Line integrals and Greens theorem

We are going to integrate complex valued functions f over paths γ
in the Argand diagram. Typically the paths are continuous piecewise
differentiable paths. For example, the sides of a rectangle.
γ is a parametrised path but the value of the integral will be in-

dependent of the parametrisation, it will only depend on the image
curve.

Suppose we are given continuous complex valued functions P : U −→
C and Q : U −→ C defined on some region U and let γ be a differen-
tiable path in U , γ : [α, β] −→ U from a = γ(α) to b = γ(β). Pick
points z0, z1, . . . , zn on the path, where z0 = a and zn = b. We define
the line integral ∫

γ

P dx+Q dy

to be the limit of the Riemann sums∑
P (zi)(xi+1 − xi) +Q(zi)(yi+1 − yi),

as the distance between successive points goes to zero. The limit exists,
as P and Q are continuous.

Suppose that the point zi = γ(ti), where

α = t0 < t1 < . . . tn−1 < tn = β.

By the mean value theorem, we can find τi ∈ (ti, ti+1) such that

x(ti+1)− x(ti) = x′(τi)(ti+1 − ti).
It follows that∑

P (zi)(xi+1 − xi) =
∑

P (γ(ti))x
′(τi)(ti+1 − ti).

Now the RHS is a Riemann sum for the integral∫ β

α

P (γ(t))x′(t) dt.

Putting all of this together we get∫
γ

P dx+Q dy =

∫ β

α

P (γ(t))
dx

dt
dt+

∫ β

α

Q(γ(t))
dy

dt
dt.

Thus to evaluate the line integral on the LHS, we just pick a parametri-
sation and evaluate the RHS.

Example 13.1. Suppose we want to evaluate∫
γ

xy dx,

1



where γ goes around the quarter unit circle in the first quadrant, start-
ing and ending at the origin.

Note we usually orient γ so that the interior is on the left.
First observe that γ is a continuous piecewise differentiable curve,

with three parts, γ1, γ2 and γ3. The horizontal line segment from 0 to
1, the arc of the circle from 1 to i and the vertical line segment from i
down to 0.

A natural parametrisation for γ1 is

γ1(t) = t,

on the interval [0, 1]. In this case x′(t) = 1 and y′(t) = 0. As xy is zero
on γ1 we have ∫

γ1

xy dx =

∫ 1

0

t · 0 · 1 dt = 0.

A natural parametrisation for γ2 is given by

γ2(t) = eit = cos t+ i sin t,

on the interval [0, π/2]. In this case

γ′2(t) = − sin t+ i cos t.

Thus ∫
γ2

xy dx =

∫ π/2

0

cos t · sin t · − sin t dt

= −
∫ π/2

0

cos t sin2 t dt

= −1

3

[
sin3 t

]π/2
0

= −1

3
.

A natural parametrisation for γ3 is

γ3(t) = i(1− t),

on the interval [0, 1]. In this case x′(t) = 0 and y′(t) = −1. As xy is
zero on γ3 we have∫

γ3

xy dx =

∫ 1

0

i(1− t) · 0 · 1 dt = 0.
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Putting all of this together we get

∫
γ

xy dx =

∫
γ1

xy dx+

∫
γ2

xy dx+

∫
γ3

xy dx

= 0− 1

3
+ 0

= −1

3
.

Theorem 13.2 (Green’s theorem). Let U be a bounded region whose
boundary ∂U is a finite union of continuous piecewise differentiable
curves. Let P and Q be two functions which have continuous partial
derivatives on some region V containing U ∪ ∂U .

Then

∫
∂U

P dx+Q dy =

∫∫
U

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Note that we orient ∂U such that the region U is on the left.
Note the way we have stated (13.2) there is no possibility of giving a

proof in this class; there are serious issues coming from topology which
first need to be addressed. In practice, if we apply (13.2) to disks or
squares or to any concrete region these issues disappear.

To illustrate how to use Green’s theorem, let us go back to the ex-
ample above. In this case the region U is the intersection of the unit
disc and the first quadrant (not including the axes). The boundary ∂U
is then the curve γ. P (x, y) = xy has continuous partial derivatives on
the whole of C. So we can apply Green’s theorem.
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We compute the RHS∫∫
U

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫∫
U

−x dxdy

=

∫∫
U

−r cos θr drdθ

= −
∫ π/2

0

∫ 1

0

r2 cos θ drdθ

= −1

3

∫ π/2

0

[
r3 cos θ

]1
0

dθ

= −1

3

∫ π/2

0

cos θ dθ

= −1

3

[
sin θ

]π/2
0

= −1

3
,

as expected.
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