14. Cauchys Theorem

We want to extend the definition of a line integral to the complex case. If we have a path γ we simply make the following definition:

$$
\mathrm{d} z=\mathrm{d} x+i \mathrm{~d} y
$$

and use this to define the line integral in the natural way:

$$
\int_{\gamma} h(z) \mathrm{d} z=\int_{\gamma} h(z) \mathrm{d} x+i \int_{\gamma} h(z) \mathrm{d} y .
$$

Note that if you break a line integral into pieces one can think of the piece of curve from z_{i} to z_{i+1} as being approximated by

$$
\mathrm{d} z=\mathrm{d} x+i \mathrm{~d} y
$$

Example 14.1. Let us compute

$$
\int_{\gamma} z^{2} \mathrm{~d} z
$$

where γ is the straight line segment from 0 to $1+i$.
We use the parametrisation

$$
\gamma(t)=t+i t \quad \text { where } \quad t \in[0,1] .
$$

In this case

$$
\begin{aligned}
\mathrm{d} z & =\mathrm{d} x+i \mathrm{~d} y \\
& =\mathrm{d} t+i \mathrm{~d} t \\
& =(1+i) \mathrm{d} t .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int_{\gamma} z^{2} \mathrm{~d} z & =\int_{0}^{1}(t+i t)^{2}(1+i) \mathrm{d} t \\
& =\int_{0}^{1} t^{2}(1+i)^{3} \mathrm{~d} t \\
& =(1+i)^{3}\left[\frac{t^{3}}{3}\right]_{0}^{1} \\
& =\frac{(1+i)^{3}}{3} \\
& =-\frac{2}{3}(1-i)
\end{aligned}
$$

Example 14.2. Let us compute

$$
\oint_{\substack{|z|=1 \\ 1}} \frac{\mathrm{~d} z}{z} .
$$

Here the circle around the integral indicates we are integrating around a closed path and that we are traversing the path so that the interior is on the left. In practice this often means we go counterclockwise.

We use the parametrisation

$$
\gamma(t)=e^{i t} \quad \text { where } \quad t \in[0,2 \pi]
$$

We have

$$
\begin{aligned}
\frac{\mathrm{d} z}{z} & =\frac{i e^{i t} \mathrm{~d} t}{e^{i t}} \\
& =i \mathrm{~d} t
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\oint_{|z|=1} \frac{\mathrm{~d} z}{z} & =\int_{0}^{2 \pi} i \mathrm{~d} t \\
& =2 \pi i
\end{aligned}
$$

Theorem 14.3 (Cauchy's Theorem). Let V be a region and let U be a bounded open subset whose boundary is the finite union of continuous piecewise smooth paths such that $U \cup \partial U \subset V$.

If the real and imaginary parts of the function $f: V \longrightarrow \mathbb{C}$ have continuous partial derivatives and they satisfy the Cauchy Riemann equations then

$$
\int_{\partial U} f(z) \mathrm{d} z=0 .
$$

Proof. We have

$$
\begin{aligned}
\int_{\partial U} f(z) \mathrm{d} z & =\int_{\partial U}(u+i v) \mathrm{d}(x+i y) \\
& =\int_{\partial U} u \mathrm{~d} x-\int_{\partial U} v \mathrm{~d} y+i\left(\int_{\partial U} v \mathrm{~d} x+\int_{\partial U} u \mathrm{~d} y\right) \\
& =\iint_{U}\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \mathrm{d} x \mathrm{~d} y+i \iint_{U}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) \mathrm{d} x \mathrm{~d} y \\
& =\iint_{U} 0 \mathrm{~d} x \mathrm{~d} y+i \iint_{U} 0 \mathrm{~d} x \mathrm{~d} y \\
& =0
\end{aligned}
$$

Example 14.4. Consider

$$
\oint_{(x-1)^{2} / 2+(y-2)^{2} / 3=1}(z+3) e^{z^{2}-5 z+6} \mathrm{~d} z .
$$

The integrand

$$
\begin{gathered}
(z+3) e^{z^{2}-5 z+6} \\
2
\end{gathered}
$$

is entire, as it is the product of a polynomial and the exponential of a polynomial. The curve is an ellipse, and it bounds the interior of the ellipse. Therefore Cauchy's theorem implies that the line integral is zero.

