15. Cauchys integral formula

Theorem 15.1 (Cauchy's Integral formula). Let U be a bounded region with piecewise smooth boundary ∂U. Let $a \in U$.

If $f(z)$ has continuous partial derivatives on some open subset $V \supset$ $U \cup \partial U$ and the real and imaginary parts of f satisfy the CauchyRiemann equations then

$$
f(a)=\frac{1}{2 \pi i} \oint_{\partial U} \frac{f(z)}{z-a} \mathrm{~d} z .
$$

Proof. As U is open, we may pick a closed disk centred at a contained in U. Suppose that the radius of this disk is $\epsilon>0$. Let U_{ϵ} be the region obtained by deleting the closed disk of radius ϵ centred at a.

Then the boundary of U_{ϵ} is equal to the boundary of U plus the boundary of the open disk of radius ϵ centred at a, namely the circle of radius ϵ centred at a, but with the reverse orientation. Let γ be this boundary circle traversed in the counterclockwise direction.

Note that the function

$$
\frac{f(z)}{z-a}
$$

is holomorphic on U_{ϵ}. Therefore by Cauchy's theorem we have

$$
\begin{aligned}
\int_{\partial U} \frac{f(z)}{z-a} \mathrm{~d} z-\int_{\gamma} \frac{f(z)}{z-a} \mathrm{~d} z & =\int_{\partial U-\gamma} \frac{f(z)}{z-a} \mathrm{~d} z \\
& =\int_{\partial U_{\epsilon}} \frac{f(z)}{z-a} \mathrm{~d} z \\
& =0
\end{aligned}
$$

It follows then that

$$
\int_{\partial U} \frac{f(z)}{z-a} \mathrm{~d} z=\oint_{|z-a|=\epsilon} \frac{f(z)}{z-a} \mathrm{~d} z .
$$

Note that the LHS is independent of the radius of the circle. So we are reduced to showing the result when U is an open disk centred at a of any radius ϵ contained in V.

We calculate the integral on the RHS using the following parametrisation:

$$
\gamma(\theta)=a+\epsilon e^{i \theta} \quad \text { where } \quad \theta \in[0,2 \pi]
$$

We have

$$
\begin{aligned}
\frac{\mathrm{d} z}{z-a} & =\frac{i \epsilon e^{i \theta} \mathrm{~d} \theta}{\epsilon e^{i \theta}} \\
& =i \mathrm{~d} \theta .
\end{aligned}
$$

Thus

$$
\oint_{|z-a|=\epsilon} \frac{f(z)}{z-a} \mathrm{~d} z=i \int_{0}^{2 \pi} f\left(a+\epsilon e^{i \theta}\right) \mathrm{d} \theta
$$

To calculate the integral on the RHS we use the fact that it is independent of ϵ. We have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(a+\epsilon e^{i \theta}\right) \mathrm{d} \theta=f(a)+\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[f\left(a+\epsilon e^{i \theta}\right)-f(a)\right] \mathrm{d} \theta
$$

It remains to show that the last integral is zero. As f has continuous partial derivatives, it is certainly continuous. Thus $f\left(a+\epsilon e^{i \theta}\right)$ tends uniformly to $f(a)$ as ϵ goes to zero. Thus the integral

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[f\left(a+\epsilon e^{i \theta}\right)-f(a)\right] \mathrm{d} \theta
$$

tends to zero as ϵ tends to zero. As the integral is independent of ϵ the only possibility is that it is zero to begin with.

Theorem 15.2. Let $f: U \longrightarrow \mathbb{C}$ be a function on a region whose real and imaginary parts have continuous partial derivatives.

The following are equivalent:
(1) the real and imaginary parts of f satisfy the Cauchy-Riemann equations.
(2) f is analytic.
(3) f is holomorphic.

Proof. We have already seen that if f is analytic then it is holomorphic and we have already seen that if f is holomorphic then the real and imaginary parts of f satisfy the Cauchy-Riemann equations.

It remains to show that if the the real and imaginary parts of f satisfy the Cauchy-Riemann equations then f is analytic. Pick a point $a \in U$ and pick a closed disk contained in U centred at a. Let γ be the boundary of this closed disk traversed in the counterclockwise direction. If z belongs the open disk bounded by γ then Cauchy's integral formula reads

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} \mathrm{~d} w
$$

We have

$$
\begin{aligned}
\frac{1}{w-z} & =\frac{1}{w-a-(z-a)} \\
& =\frac{1}{w-a} \frac{1}{1-\frac{(z-a)}{w-a}} \\
& =\frac{1}{w-a}+\frac{(z-a)}{(w-a)^{2}}+\frac{(z-a)^{2}}{(w-a)^{3}}+\ldots
\end{aligned}
$$

We consider this as a power series in z centred at a. We have uniform convergence when the absolute value of the geometric ratio

$$
\left|\frac{z-a}{w-a}\right|<1
$$

As $|w-a|$ is a constant, we therefore have uniform convergence if we stay away from γ. Therefore we can integrate the power series term by term:

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} \mathrm{~d} w \\
& =\frac{1}{2 \pi i} \int_{\gamma}\left(\frac{f(w)}{w-a}+\frac{(z-a) f(w)}{(w-a)^{2}}+\frac{(z-a)^{2} f(w)}{(w-a)^{3}}+\ldots\right) \mathrm{d} w \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-a} \mathrm{~d} w+\frac{1}{2 \pi i} \int_{\gamma} \frac{(z-a) f(w)}{(w-a)^{2}} \mathrm{~d} w+\frac{1}{2 \pi i} \int_{\gamma} \frac{(z-a)^{2} f(w)}{(w-a)^{3}} \mathrm{~d} w+\ldots \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-a} \mathrm{~d} w+\frac{(z-a)}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{2}} \mathrm{~d} w+\frac{(z-a)^{2}}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{3}} \mathrm{~d} w+\ldots \\
& =a_{0}+a_{1}(z-a)+a_{2}(z-a)^{2}+\ldots,
\end{aligned}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} \mathrm{~d} w
$$

It follows that $f(z)$ is analytic.
Note that we can extract a little bit more from the proof.
Theorem 15.3. Let $f: U \longrightarrow \mathbb{C}$ be a holomorphic function on a region U.

If $a \in U$ then we can write

$$
f(z)=\sum a_{n}(z-a)^{n}
$$

where the radius of convergence is at least the radius of any open disk centred at a contained in U, that is, at least the distance of a to the
closest point on the boundary. Further

$$
a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} \mathrm{~d} z
$$

and the nth derivative of f at a is given by

$$
\frac{n!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} \mathrm{~d} z
$$

Proof. The first two statements are immediate from the proof of (15.2).
The last statement follows from the fact that the nth derivative of f at a is equal to

$$
n!a_{n}
$$

The last formula for the derivatives of f is also known as Cauchy's formula.

Corollary 15.4. Let $f: U \longrightarrow \mathbb{C}$ be a holomorphic function such that the real and imaginary parts of f have continuous partial derivatives.

Then f is infinitely differentiable.
Proof. By (15.2) f is analytic. But analytic functions are infinitely differentiable.

