
15. Cauchys integral formula

Theorem 15.1 (Cauchy’s Integral formula). Let U be a bounded region
with piecewise smooth boundary ∂U . Let a ∈ U .

If f(z) has continuous partial derivatives on some open subset V ⊃
U ∪ ∂U and the real and imaginary parts of f satisfy the Cauchy-
Riemann equations then

f(a) =
1

2πi

∮
∂U

f(z)

z − a
dz.

Proof. As U is open, we may pick a closed disk centred at a contained
in U . Suppose that the radius of this disk is ε > 0. Let Uε be the region
obtained by deleting the closed disk of radius ε centred at a.

Then the boundary of Uε is equal to the boundary of U plus the
boundary of the open disk of radius ε centred at a, namely the circle
of radius ε centred at a, but with the reverse orientation. Let γ be this
boundary circle traversed in the counterclockwise direction.

Note that the function
f(z)

z − a
is holomorphic on Uε. Therefore by Cauchy’s theorem we have∫

∂U

f(z)

z − a
dz −

∫
γ

f(z)

z − a
dz =

∫
∂U−γ

f(z)

z − a
dz

=

∫
∂Uε

f(z)

z − a
dz

= 0.

It follows then that∫
∂U

f(z)

z − a
dz =

∮
|z−a|=ε

f(z)

z − a
dz.

Note that the LHS is independent of the radius of the circle. So we are
reduced to showing the result when U is an open disk centred at a of
any radius ε contained in V .

We calculate the integral on the RHS using the following parametri-
sation:

γ(θ) = a+ εeiθ where θ ∈ [0, 2π].

We have

dz

z − a
=
iεeiθdθ

εeiθ

= idθ.
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Thus ∮
|z−a|=ε

f(z)

z − a
dz = i

∫ 2π

0

f(a+ εeiθ) dθ.

To calculate the integral on the RHS we use the fact that it is inde-
pendent of ε. We have

1

2π

∫ 2π

0

f(a+ εeiθ) dθ = f(a) +
1

2π

∫ 2π

0

[
f(a+ εeiθ)− f(a)

]
dθ

It remains to show that the last integral is zero. As f has continuous
partial derivatives, it is certainly continuous. Thus f(a + εeiθ) tends
uniformly to f(a) as ε goes to zero. Thus the integral

1

2π

∫ 2π

0

[
f(a+ εeiθ)− f(a)

]
dθ

tends to zero as ε tends to zero. As the integral is independent of ε the
only possibility is that it is zero to begin with. �

Theorem 15.2. Let f : U −→ C be a function on a region whose real
and imaginary parts have continuous partial derivatives.

The following are equivalent:

(1) the real and imaginary parts of f satisfy the Cauchy-Riemann
equations.

(2) f is analytic.
(3) f is holomorphic.

Proof. We have already seen that if f is analytic then it is holomorphic
and we have already seen that if f is holomorphic then the real and
imaginary parts of f satisfy the Cauchy-Riemann equations.

It remains to show that if the the real and imaginary parts of f
satisfy the Cauchy-Riemann equations then f is analytic. Pick a point
a ∈ U and pick a closed disk contained in U centred at a. Let γ be the
boundary of this closed disk traversed in the counterclockwise direction.
If z belongs the open disk bounded by γ then Cauchy’s integral formula
reads

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw.
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We have

1

w − z
=

1

w − a− (z − a)

=
1

w − a
1

1− (z−a)
w−a

=
1

w − a
+

(z − a)

(w − a)2
+

(z − a)2

(w − a)3
+ . . . .

We consider this as a power series in z centred at a. We have uniform
convergence when the absolute value of the geometric ratio∣∣∣∣ z − aw − a

∣∣∣∣ < 1.

As |w − a| is a constant, we therefore have uniform convergence if we
stay away from γ. Therefore we can integrate the power series term by
term:

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw

=
1

2πi

∫
γ

(
f(w)

w − a
+

(z − a)f(w)

(w − a)2
+

(z − a)2f(w)

(w − a)3
+ . . .

)
dw

=
1

2πi

∫
γ

f(w)

w − a
dw +

1

2πi

∫
γ

(z − a)f(w)

(w − a)2
dw +

1

2πi

∫
γ

(z − a)2f(w)

(w − a)3
dw + . . .

=
1

2πi

∫
γ

f(w)

w − a
dw +

(z − a)

2πi

∫
γ

f(w)

(w − a)2
dw +

(z − a)2

2πi

∫
γ

f(w)

(w − a)3
dw + . . .

= a0 + a1(z − a) + a2(z − a)2 + . . . ,

where

an =
1

2πi

∫
γ

f(w)

(w − a)n+1
dw.

It follows that f(z) is analytic. �

Note that we can extract a little bit more from the proof.

Theorem 15.3. Let f : U −→ C be a holomorphic function on a region
U .

If a ∈ U then we can write

f(z) =
∑

an(z − a)n

where the radius of convergence is at least the radius of any open disk
centred at a contained in U , that is, at least the distance of a to the
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closest point on the boundary. Further

an =
1

2πi

∫
γ

f(z)

(z − a)n+1
dz

and the nth derivative of f at a is given by

n!

2πi

∫
γ

f(z)

(z − a)n+1
dz.

Proof. The first two statements are immediate from the proof of (15.2).
The last statement follows from the fact that the nth derivative of

f at a is equal to
n!an. �

The last formula for the derivatives of f is also known as Cauchy’s
formula.

Corollary 15.4. Let f : U −→ C be a holomorphic function such that
the real and imaginary parts of f have continuous partial derivatives.

Then f is infinitely differentiable.

Proof. By (15.2) f is analytic. But analytic functions are infinitely
differentiable. �
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