16. Liouvilles theorem

To apply Cauchy's formula we will need some easy estimates.
Definition 16.1. Let

$$
\gamma:[\alpha, \beta] \longrightarrow \mathbb{C}
$$

be a differentiable curve. The length of γ is the integral

$$
L=\int_{\alpha}^{\beta}\left(x^{\prime}(t)^{2}+y^{\prime}(t)\right)^{1 / 2} \mathrm{~d} t
$$

If one picks points $a=z_{0}, z_{1}, \ldots, z_{n}=b$, where $a=\gamma(\alpha)$ and $b=$ $\gamma(\beta)$ then the distance from z_{i} to z_{i+1} along γ is approximated by the length of the line connecting z_{i} to z_{i+1}, which is

$$
\left(\left(x_{i+1}-x_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}\right)^{1 / 2}
$$

by Pythagoras. By the mean value theorem we can find τ_{i} and v_{i} in the interval $\left(t_{i}, t_{i+1}\right)$ such that

$$
x_{i+1}-x_{i}=x^{\prime}\left(\tau_{i}\right)\left(t_{i+1}-t_{i}\right) \quad \text { and } \quad y_{i+1}-y_{i}=y^{\prime}\left(v_{i}\right)\left(t_{i+1}-t_{i}\right)
$$

Thus the length of the line connecting z_{i} to z_{i+1} is

$$
\begin{aligned}
\left(\left(x_{i+1}-x_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}\right)^{1 / 2} & =\left(\left(x^{\prime}\left(\tau_{i}\right)\left(t_{i+1}-t_{i}\right)\right)^{2}+\left(y^{\prime}\left(v_{i}\right)\left(t_{i+1}-t_{i}\right)\right)^{2}\right)^{1 / 2} \\
& =\left(\left(x^{\prime}\left(\tau_{i}\right)\right)^{2}+\left(y^{\prime}\left(v_{i}\right)\right)^{2}\right)^{1 / 2}\left(t_{i+1}-t_{i}\right) .
\end{aligned}
$$

Summing over i we get a Riemann sum approximating the integral in (16.1).

Note that

$$
\left(x^{\prime}(t)^{2}+y^{\prime}(t)\right)^{1 / 2}=\left|\gamma^{\prime}(t)\right|
$$

is the length of the tangent vector γ at t. Thus the length is also

$$
L=\int_{\alpha}^{\beta}\left|\gamma^{\prime}(t)\right| \mathrm{d} t
$$

the integral of the speed.
If γ is piecewise differentiable, we can define the length by simply adding together the lengths of the differentiable pieces.

If

$$
\gamma:[\alpha, \beta] \longrightarrow U
$$

is a curve and $f: U \longrightarrow \mathbb{C}$ is continuous then M denotes the maximum value of the absolute value of f over the curve γ :

$$
M=\sup _{t \in[\alpha, \beta]}|f(\gamma(t))| .
$$

We have the following basic but very useful:

Lemma 16.2. Let $f: U \longrightarrow \mathbb{C}$ be a continuous function over a region U and let

$$
\gamma:[\alpha, \beta] \longrightarrow U
$$

be a piecewise differentiable curve.
Then

$$
\left|\int_{\gamma} f(z) \mathrm{d} z\right| \leq L M
$$

It is easy to check (16.2) by using Riemann sums and the triangle inequality.

Theorem 16.3 (Liouville's theorem). Every bounded entire function is constant.

Proof. By assumption there is a real number M_{0} such that

$$
|f(z)| \leq M_{0}
$$

As $f(z)$ is entire it has a power series expansion whose radius of convergence is ∞,

$$
f(z)=\sum_{n} a_{n} z^{n} .
$$

The coefficients are given by Cauchy's formula

$$
a_{n}=\frac{1}{2 \pi i} \oint_{|z|=r} \frac{f(z) \mathrm{d} z}{z^{n+1}},
$$

where the radius is any positive real number r. We estimate the absolute value of a_{n}.

The circle of radius r centred at the origin has length

$$
L=2 \pi r .
$$

We also have

$$
\begin{aligned}
\left|\frac{f(z)}{z^{n+1}}\right| & =\frac{|f(z)|}{\left|z^{n+1}\right|} \\
& =\frac{|f(z)|}{r^{n+1}} \\
& \leq \frac{M_{0}}{r^{n+1}} .
\end{aligned}
$$

(16.2) implies that

$$
\begin{aligned}
\left|a_{n}\right| & =\left|\frac{1}{2 \pi i} \oint_{|z|=r} \frac{f(z) \mathrm{d} z}{z^{n+1}}\right| \\
& \leq L M \\
& \leq 2 \pi r \frac{M_{0}}{2 \pi r^{n+1}} \\
& =\frac{M_{0}}{r^{n}}
\end{aligned}
$$

As r tends to infinity the last quantity tends to zero if $n>0$. The only possibility is that

$$
\left|a_{n}\right|=0 \quad \text { so that } \quad a_{n}=0
$$

Thus

$$
f(z)=a_{0}
$$

is a constant.
The inequality

$$
\left|a_{n}\right| r^{n} \leq \sup _{|z|=r}|f(z)|
$$

is sometimes known as Cauchy's inequality.
It is convenient to introduce the notion of the limit at ∞. One common trick in real variables is to use the fact that a function $h(x)$ tends to infinity if and only if $1 / h(x)$ tends to infinity. We can do the same thing in complex variable but now for the input as well as the output:
Definition 16.4. Let $U \subset \mathbb{C}$ be a region. We say that U is a neighbourhood of ∞ if there is a real number R such that if $|z|>R$ then $z \in U$.

Let $f: U \longrightarrow \mathbb{C}$ be a function defined on a region U which is a neighbourhood of infinity. The limit of $f(z)$ as z goes to infinity is

$$
\lim _{z \rightarrow \infty} f(z)=\lim _{w \rightarrow 0} f\left(\frac{1}{w}\right) .
$$

Note that w tends towards zero if and only if $|w|$ tends towards zero if and only if $|z|$ tends towards ∞. Note also that U is a neighbourhood of infinity if and only if the image of U under the reciprocal map contains an open disk centred at the origin.
Theorem 16.5 (Fundamental theorem of algebra). If $p(z)$ is a complex polynomial of degree $n>0$ then $p(z)$ has a complex root, that is, there is a complex number α such that

$$
p(\alpha)=0
$$

Proof. Suppose that $p(z)$ is a polynomial with no roots. We are going to show that $p(z)$ has degree zero.

Let

$$
f(z)=\frac{1}{p(z)} .
$$

As we are assuming that $p(z)$ is never zero, it follows that $f(z)$ is entire.
Suppose that

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0},
$$

where $a_{n} \neq 0$. There is no harm in dividing through by a_{n} so that $a_{n}=1$. Consider

$$
\frac{p(z)}{z^{n}}=1+\frac{a_{n-1}}{z}+\frac{a_{n-2}}{z^{2}}+\cdots+\frac{a_{0}}{z^{n}} .
$$

As z goes to infinity this tends to 1 . Thus $|p(z)|$ is bounded away from zero and so $|f(z)|$ is bounded from above. But then f is constant by Liouville's theorem so that $p(z)$ is constant. It follows that the degree of $p(z)$ is zero.

