
16. Liouvilles theorem

To apply Cauchy’s formula we will need some easy estimates.

Definition 16.1. Let

γ : [α, β] −→ C,
be a differentiable curve. The length of γ is the integral

L =

∫ β

α

(x′(t)2 + y′(t))1/2 dt.

If one picks points a = z0, z1, . . . , zn = b, where a = γ(α) and b =
γ(β) then the distance from zi to zi+1 along γ is approximated by the
length of the line connecting zi to zi+1, which is

((xi+1 − xi)2 + (yi+1 − yi)2)1/2

by Pythagoras. By the mean value theorem we can find τi and υi in
the interval (ti, ti+1) such that

xi+1 − xi = x′(τi)(ti+1 − ti) and yi+1 − yi = y′(υi)(ti+1 − ti).
Thus the length of the line connecting zi to zi+1 is

((xi+1 − xi)2 + (yi+1 − yi)2)1/2 = ((x′(τi)(ti+1 − ti))2 + (y′(υi)(ti+1 − ti))2)1/2

= ((x′(τi))
2 + (y′(υi))

2)1/2(ti+1 − ti).
Summing over i we get a Riemann sum approximating the integral

in (16.1).
Note that

(x′(t)2 + y′(t))1/2 = |γ′(t)|
is the length of the tangent vector γ at t. Thus the length is also

L =

∫ β

α

|γ′(t)| dt,

the integral of the speed.
If γ is piecewise differentiable, we can define the length by simply

adding together the lengths of the differentiable pieces.
If

γ : [α, β] −→ U

is a curve and f : U −→ C is continuous then M denotes the maximum
value of the absolute value of f over the curve γ:

M = sup
t∈[α,β]

|f(γ(t))|.

We have the following basic but very useful:
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Lemma 16.2. Let f : U −→ C be a continuous function over a region
U and let

γ : [α, β] −→ U,

be a piecewise differentiable curve.
Then ∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ LM.

It is easy to check (16.2) by using Riemann sums and the triangle
inequality.

Theorem 16.3 (Liouville’s theorem). Every bounded entire function
is constant.

Proof. By assumption there is a real number M0 such that

|f(z)| ≤M0.

As f(z) is entire it has a power series expansion whose radius of
convergence is ∞,

f(z) =
∑
n

anz
n.

The coefficients are given by Cauchy’s formula

an =
1

2πi

∮
|z|=r

f(z) dz

zn+1
,

where the radius is any positive real number r. We estimate the abso-
lute value of an.

The circle of radius r centred at the origin has length

L = 2πr.

We also have ∣∣∣∣f(z)

zn+1

∣∣∣∣ =
|f(z)|
|zn+1|

=
|f(z)|
rn+1

≤ M0

rn+1
.
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(16.2) implies that

|an| =
∣∣∣∣ 1

2πi

∮
|z|=r

f(z) dz

zn+1

∣∣∣∣
≤ LM

≤ 2πr
M0

2πrn+1

=
M0

rn
.

As r tends to infinity the last quantity tends to zero if n > 0. The only
possibility is that

|an| = 0 so that an = 0.

Thus
f(z) = a0

is a constant. �

The inequality
|an|rn ≤ sup

|z|=r
|f(z)|

is sometimes known as Cauchy’s inequality.
It is convenient to introduce the notion of the limit at ∞. One

common trick in real variables is to use the fact that a function h(x)
tends to infinity if and only if 1/h(x) tends to infinity. We can do the
same thing in complex variable but now for the input as well as the
output:

Definition 16.4. Let U ⊂ C be a region. We say that U is a neigh-
bourhood of ∞ if there is a real number R such that if |z| > R then
z ∈ U .

Let f : U −→ C be a function defined on a region U which is a
neighbourhood of infinity. The limit of f(z) as z goes to infinity is

lim
z→∞

f(z) = lim
w→0

f

(
1

w

)
.

Note that w tends towards zero if and only if |w| tends towards zero if
and only if |z| tends towards∞. Note also that U is a neighbourhood of
infinity if and only if the image of U under the reciprocal map contains
an open disk centred at the origin.

Theorem 16.5 (Fundamental theorem of algebra). If p(z) is a complex
polynomial of degree n > 0 then p(z) has a complex root, that is, there
is a complex number α such that

p(α) = 0.
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Proof. Suppose that p(z) is a polynomial with no roots. We are going
to show that p(z) has degree zero.

Let

f(z) =
1

p(z)
.

As we are assuming that p(z) is never zero, it follows that f(z) is entire.
Suppose that

p(z) = anz
n + an−1z

n−1 + · · ·+ a0,

where an 6= 0. There is no harm in dividing through by an so that
an = 1. Consider

p(z)

zn
= 1 +

an−1
z

+
an−2
z2

+ · · ·+ a0
zn
.

As z goes to infinity this tends to 1. Thus |p(z)| is bounded away from
zero and so |f(z)| is bounded from above. But then f is constant by
Liouville’s theorem so that p(z) is constant. It follows that the degree
of p(z) is zero. �
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