17. Power series expansion at infinity

We have already seen that entire functions are determined by what happens if |z| is large, if z is going to infinity. This suggests we should explore what happens at ∞ .

Definition 17.1. We say that a function f is holomorphic at ∞ if the function

$$g(w) = f\left(\frac{1}{w}\right)$$

is holomorphic at 0.

Holomorphic at 0 means that there is an open disk centred at 0 and g is holomorphic on this open disk.

In other words, to understand how f(z) behaves when $z = \infty$ we make the change of variables

$$w = \frac{1}{z}$$
 so that $z = \frac{1}{w}$.

Suppose that f(z) is holomorphic at ∞ then g(w) = f(1/w) is holomorphic at 0 so that it has a power series expansion

$$g(w) = \sum b_n w^n = b_0 + b_1 w + b_2 w^2 + b_3 w^3 + \dots,$$

valid for |w| < R, where R is the radius of convergence.

It follows that f(z) has a power series expansion in descending powers of z,

$$f(z) = \sum_{n=0}^{\infty} \frac{b_n}{z^n} = b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \dots$$

This series converges absolutely for |z| > 1/R and it converges uniformly for |z| > r, where r > 1/R.

In theory we can compute the coefficients via a line integral. We start with a simple computation, which is interesting in its own right:

Example 17.2. If m is an integer then

$$\oint_{|z|=r} z^m \, \mathrm{d}z = \begin{cases} 2\pi i & \text{if } m = -1\\ 0 & \text{otherwise.} \end{cases}$$

There are a number of ways to see this. The first is to quote the big theorems. If $m \ge 0$ then z^m is holomorphic on closed disk of radius r centred at 0 and so the integral is zero by Cauchy's theorem. (We will say that a function f is holomorphic on a subset $E \subset \mathbb{C}$ if it is holomorphic on some open subset U containing E). If m < 0 then we can use Cauchy's formula. The derivative of 1 is zero and so the only thing we have to compute is when m = -1 and the result follows by Cauchy's integral formula.

The other is by direct computation (which is particularly easy in this case). We use the parametrisation

$$\gamma(\theta) = re^{i\theta}$$
 where $\theta \in [0, 2\pi].$

In this case we have

$$\oint_{|z|=r} z^m \, \mathrm{d}z = \int_0^{2\pi} r^m e^{im\theta} ir e^{i\theta} \, \mathrm{d}\theta$$
$$= ir^{m+1} \int_0^{2\pi} e^{i(m+1)\theta} \, \mathrm{d}\theta.$$

If $m + 1 \neq 0$ it is not hard to see that the integral is zero, as $e^{i\theta}$ has period 2π . If m + 1 = 0 then there is no dependence on r and the integral is $2\pi i$.

Now we can compute the coefficients. If $m \geq 0$ is an integer then we have

$$\oint_{|z|=r} f(z) z^m \, \mathrm{d}z = \oint_{|z|=r} \left(\sum_{n=0}^{\infty} \frac{b_n}{z^n} \right) z^m \, \mathrm{d}z$$
$$= \oint_{|z|=r} \sum_{n=0}^{\infty} \left(\frac{b_n}{z^{n-m}} \right) \, \mathrm{d}z$$
$$= \sum_{n=0}^{\infty} \oint_{|z|=r} \frac{b_n}{z^{n-m}} \, \mathrm{d}z$$
$$= \sum_{n=0}^{\infty} b_n \oint_{|z|=r} z^{m-n} \, \mathrm{d}z$$
$$= 2\pi i b_{m+1},$$

since the integral on the penultimate line is non-zero only if the exponent

m-n=-1 so that n=m+1.

Thus

$$b_n = \frac{1}{2\pi i} \oint_{|z|=r} f(z) z^{n+1} \,\mathrm{d}z.$$

Example 17.3. The function

$$f(z) = \frac{1}{z^n}$$

is holomorphic at ∞ .

Indeed, the function

$$g(w) = f\left(\frac{1}{w}\right)$$
$$= w^n,$$

is holomorphic at 0.

Example 17.4. The function

$$f(z) = \frac{1}{z^2 + 1}$$

is holomorphic at ∞ .

Indeed, the function

$$g(w) = f\left(\frac{1}{w}\right)$$
$$= \frac{1}{(1/w)^2 + 1}$$
$$= \frac{w^2}{1 + w^2}$$

is holomorphic at 0, as it is the quotient of two polynomials and the denominator is non-zero at 0.

As g is holomorphic at 0 it follows that g(w) has a power series expansion at 0, which we can compute using the expansion of the geometric series,

$$\frac{1}{1-u} = 1 + u + u^2 + u^3 + \dots,$$

so that

$$g(w) = \frac{w^2}{1+w^2} = w^2 - w^4 + w^6 - w^8 + \dots$$

Thus

Example 17.5. The Möbius transformation

$$z \longrightarrow \frac{az+b}{cz+d} = f(z),$$

where $ab - bc \neq 0$ is holomorphic at ∞ if and only if $c \neq 0$.

Indeed,

$$g(w) = f\left(\frac{1}{w}\right)$$
$$= \frac{a(1/w) + b}{c(1/w) + d}$$
$$= \frac{a + bw}{c + dw}$$

is holomorphic at 0 if and only if $c \neq 0$.