
18. Zeroes of holomorphic functions

One of the most basic properties of polynomials p(z) is that one can
talk about the order of the zeroes of the polynomial. Thus z = 0 is a
zero of order 3 of

p(z) = z3(z2 + 1).

One can extend this to power series, so that it makes sense to talk
about the order of the zeroes of a holomorphic function:

Definition 18.1. Let f : U −→ C be a holomorphic function on a
region U . We say that a ∈ U is a zero of f of order n if all the
derivatives of f up to order n− 1 vanish at a and the nth derivative is
non-zero at a.

A zero of order one is called a simple zero and a zero of order two
is called a double zero.

Lemma 18.2. Let f : U −→ C be a holomorphic function. Let a ∈ U .
The following are equivalent:

(1) f has a zero of order n at a.
(2) f has a power series expansion centred at a of the form

f(z) =
∑
k≥n

ak(z − a)k = an(z − a)n + an+1(z − a)n+1 + . . . ,

where an 6= 0.
(3) We may write

f(z) = (z − a)ng(z)

where g(z) is holomorphic at a and does not vanish at a.

Proof. Suppose that (1) holds. As f is holomorphic it has a power
series

f(z) =
∑
k≥0

ak(z−a)k = a0+a1(z−a)+a2(z−a)2+· · ·+an(z−a)n+an+1(z−a)n+1+. . . .

The mth derivative of f at a is

m!am.

It follows that

a0 = a1 = a2 = · · · = an−1 = 0 and an 6= 0.

Thus (2) holds.
Now suppose that (2) holds. Let

g(z) = an + an+1(z − a) + an+2(z − a)2 + . . . .
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It is not hard to check that the radius of convergence of the power series
on the RHS is the same as the radius of convergence of the power series
for f . Thus g is a holomorphic function in a neighbourhood of a. Note
that

f(z) = (z − a)ng(z) and g(a) = an 6= 0.

Thus (3) holds.
Finally suppose that (3) holds. If n > 0 then

f(a) = (a− a)ng(a)

= 0.

We have

f ′(z) = n(z − a)n−1g(z) + (z − a)ng′(z).

If n > 1 then

f ′(a) = n(a− a)n−1g(a) + (a− a)ng′(a)

= 0 + 0

= 0.

In general, note that n(z − a)n−1g(z) has a zero of order n − 1 by
induction. Thus the first n− 2 derivatives of n(z− a)n−1g(z) vanish at
a and the last one does not vanish at a. On the other hand, the first
n− 1 derivatives of (z − a)ng′(z) vanish. Thus (1) holds. �

Example 18.3. The entire function (z − a)n has a zero of order n at
a.

In this case g(z) = 1.

Example 18.4. The entire function sin z has only simple zeroes.

Indeed sin z is zero if and only if z is an integer multiple of π. The
derivative of sin z is cos z. This is ±1 at the integer multiples of π.
Thus sin z has only simple zeroes.

In this case

sin z = z − z3

3!
+
z5

5!
− . . .

= z(1− z2

3!
+
z4

5!
− . . . ).

Thus

g(z) = 1− z2

3!
+
z4

5!
− . . . .

Note that g(0) = 1 6= 0.
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Example 18.5. The entire function

cos z − 1

has a double zero at the even multiples of 2π.

Indeed the zeroes of cos z − 1 are at the even multiples of 2π, since
this is where cos z = 1. The derivative of cos z is − sin z and this is
also zero at the even multiples of 2π. The derivative of − sin z, that is,
the 2nd derivative of cos z − 1, is − cos z. This is not zero at the even
multiples of 2π.

In this case

cos z − 1 = −z
2

2!
+
z4

4!
− z6

6!
+ . . .

= z2(− 1

2!
+
z2

4!
− z4

6!
+ . . . ).

Hence

g(z) = − 1

2!
+
z2

4!
− z4

6!
+ . . . .

Note that g(0) = −1/2 6= 0.
One of the most important properties of a holomorphic function is

that its zeroes are isolated (assuming it is not identically zero):

Definition 18.6. We say that a number e belonging to a set of complex
numbers E ⊂ C is isolated if there is an open disk centred about e such
that e is the only complex number in E belonging to the disk.

If e is not an isolated point then we say that E is an accumulation
point of E.

Example 18.7. Let

E = { 1

n
|n ∈ N } ∪ {0} ⊂ C.

Every non-zero number in E is an isolated point of E. On the other
hand 0 is an accumulation point, since

lim
n→∞

1

n
= 0.

Proposition 18.8. Let f : U −→ C be a holomorphic function on a
region U which is not identically zero.

Then the zeroes of f are isolated.

Proof. We will assume the following result (which is true but involves
a little bit of topology): f is not identically zero on any disk.
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Let a ∈ U be a zero of f . As f is holomorphic it has a power series
centred at a. As f is not identically zero on this disk this power series
is not identically zero. By (18.2) we may write

f(z) = (z − a)ng(z),

where g(z) is holomorphic and non-zero at a. As g is continuous it is
non-zero on some disk centred at a.

Note that if b belongs to this disk and f(b) = 0 then (b− a)n = 0 as
g(b) 6= 0. But then b = a and so a is an isolated zero of f . �

Once again this seemingly simple statement has some very strong
consequences:

Proposition 18.9. Let f and g be two holomorphic functions on the
same region U .

If the set of points E where f and g are equal contains a point a
which is not isolated then f = g.

Proof. Let h = f − g : U −→ C. Then h is a holomorphic function on
U as it is the difference of two holomorphic functions. Then h is zero
on E so that a is a zero of h which is not isolated.

But then h is identically zero. Thus f − g = 0 so that f = g. �

Note that sin z is zero at infinitely many points, all of the integer
multiples of π. However all of those points are isolated points. The
sine function is not identically zero, of course.

We return to an example we saw before:

Example 18.10.
cos2 + sin2 z = 1,

for any complex number z.

Indeed, let f be the entire function cos2 z + sin2 z and let g be the
constant function 1, so that g is entire. Then f and g are equal on the
real line. As every point of the real line is not isolated it follows that
f and g are equal.

But then
cos2 z + sin2 z = 1.
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