19. Laurent Series

If a holomorphic function is defined on an open disk it has a power series representation on that disk. What can we say about functions holomorphic on an annulus?

Definition 19.1. If $a \in \mathbb{C}$ and $\sigma<\rho$, belonging to $[0, \infty]$, then the region

$$
U=\{z \in \mathbb{C}|\sigma<|z-a|<\rho\}
$$

is called an annulus.
In short, an annulus is the region between two circles. Note that this region is not simply connected, it has a hole in the middle. It is the simplest region not conformally equivalent to the unit disk.

Observe that there are two interesting extremes. If $\sigma=0$ we are just excluding a. Thus we have a punctured disk. If $\rho=\infty$ we have a neighbourhood of infinity. If $\sigma=0$ and $\rho=\infty$ then we have $U=$ $\mathbb{C}-\{a\}$, the punctured plane.

Example 19.2. The function

$$
z+\frac{1}{z}
$$

is holomorphic on the annulus $U=\mathbb{C}-\{0\}$.
It cannot be represented by a power series, since it is not holomorphic at 0 . Nor does it have a power series expansion at ∞, since it not holomorphic at ∞. Indeed

$$
\begin{aligned}
g(w) & =f\left(\frac{1}{w}\right) \\
& =\frac{1}{w}+w
\end{aligned}
$$

is not holomorphic at 0 .
However it is the sum of a power series centred at 0 , with radius of convergence $\rho=\infty$ and a power series expansion at ∞, with radius of convergence $1 / \sigma=\infty$.

Theorem 19.3. Let $f: U \longrightarrow \mathbb{C}$ be a holomorphic function on the annulus

$$
U=\{z \in \mathbb{C}|\sigma<|z-a|<\rho\} .
$$

Then there are two holomorphic functions f_{0} and f_{∞} such that

$$
f(z)=f_{0}(z)+f_{\infty}(z)
$$

where $f_{0}(z)$ is holomorphic on the open disk centred at a of radius ρ and $f_{\infty}(z)$ is holomorphic outside the closed disk centred at a of radius
σ. If we require in addition that $f_{\infty}(z)$ is zero at infinity then $f_{0}(z)$ and $f_{\infty}(z)$ are unique with this property.

Moreover

$$
f_{0}=\sum_{k \geq 0} a_{k}(z-a)^{k} \quad \text { and } \quad f_{\infty}=\sum_{k<0} a_{k}(z-a)^{k} .
$$

It follows that we may write

$$
\begin{aligned}
f(z) & =\sum_{k} a_{k}(z-a)^{k} \\
& =\cdots+\frac{a_{-3}}{(z-a)^{3}}+\frac{a_{-2}}{(z-a)^{2}}+\frac{a_{-1}}{z-a}+a_{0}+a_{1}(z-a)+a_{2}(z-a)^{2}+a_{3}(z-a)^{3}+\ldots
\end{aligned}
$$

where the summation is over all of the integers.
The doubly infinite series is called a Laurent series.
Example 19.4. Consider the function

$$
f(z)=\frac{1}{(z-1)(z-2)}
$$

This is holomorphic on the annulus

$$
U=\{z \in \mathbb{C}|1<|z|<2\} .
$$

Therefore it has a Laurent expansion centred at zero which converges on the annulus. To find the Laurent expansion, we use the method of partial fractions.

$$
\frac{1}{(z-1)(z-2)}=\frac{1}{z-2}-\frac{1}{z-1} .
$$

Note that this is the decomposition into a function holomorphic for $|z|<2$ and a function holomorphic for $|z|>1$ vanishing at infinity. We have

$$
\begin{aligned}
\frac{1}{z-2} & =-\frac{1}{2} \frac{1}{1-z / 2} \\
& =-\frac{1}{2}-\frac{z}{4}-\frac{z^{2}}{8}+\ldots .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\frac{1}{z-1} & =\frac{1}{z} \frac{1}{1-1 / z} \\
& =\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\ldots
\end{aligned}
$$

Thus

$$
\frac{1}{(z-1)(z-2)}=\cdots-\frac{1}{z^{3}}-\frac{1}{z^{2}}-\frac{1}{z}-\frac{1}{2}-\frac{z}{4}-\frac{z^{2}}{8}+\ldots
$$

Proof of (19.3). We first address uniqueness of the decomposition. Suppose that

$$
f(z)=f_{0}(z)+f_{\infty}(z)=g_{0}(z)+g_{\infty}(z),
$$

are two ways to write f as a combination of a holomorphic function on the open disk $|z-a|<\rho$ and on the region $|z-a|>\sigma$, where both $f_{\infty}(z)$ and $g_{\infty}(z)$ vanish at ∞.

We have

$$
f_{0}(z)-g_{0}(z)=g_{\infty}(z)-f_{\infty}(z) .
$$

Call the common function $h(z)$. The function on the LHS is holomorphic for $|z-a|<\rho$. So $h(z)$ is holomorphic for $|z-a|<\rho$. The function on the RHS is holomorphic for $|z-a|>\sigma$ and vanishes at ∞. Therefore $h(z)$ is holomorphic for $|z-a|>\sigma$ and vanishes at ∞.

As for every complex number z we either have $|z-a|<\rho$ or $|z-a|>\sigma$ (or both, on the annulus), it follows that $h(z)$ is entire. As $h(z)$ is holomorphic at infinity, it is bounded. Therefore Liouville's theorem implies that $h(z)$ is constant. As $h(z)$ vanishes at infinity, it follows that $h(z)=0$.

But then

$$
f_{0}(z)=g_{0}(z) \quad \text { and } \quad g_{\infty}(z)=f_{\infty}(z) .
$$

This gives us uniqueness.
We now turn to existence. Pick two circles of radii

$$
\sigma<s<r<\rho .
$$

Cauchy's integral formula applied to (the smaller) annulus reads

$$
f(z)=\frac{1}{2 \pi i} \oint_{|w-a|=r} \frac{f(w)}{w-z} \mathrm{~d} w-\frac{1}{2 \pi i} \oint_{|w-a|=s} \frac{f(w)}{w-z} \mathrm{~d} w .
$$

The function

$$
f_{0}(z)=\frac{1}{2 \pi i} \oint_{|w-a|=r} \frac{f(w)}{w-z} \mathrm{~d} w
$$

is holomorphic for $|z-a|<r$ and the function

$$
f_{\infty}(z)=\frac{1}{2 \pi i} \oint_{|w-a|=s} \frac{f(w)}{w-z} \mathrm{~d} w
$$

is holomorphic for $|z-a|>s$ and tends to zero as z approaches infinity (see homework 7, problem 1, for the fact that we get holomorphic functions).

Since we can choose s and r as close to σ and ρ as we please, without changing $f_{0}(z)$ and $f_{\infty}(z)$, it follows that $f_{0}(z)$ is holomorphic on the open disk centred at a of radius ρ and $f_{\infty}(z)$ is holomorphic outside the closed disk centred at a of radius σ.

Example 19.5. Consider the function

$$
f(z)=\frac{1}{(z-1)(z-2)} .
$$

Now let us consider what happens when we expand it as a Laurent series centred at 1 . It is not holomorphic at $z=1$ and at $z=2$. It is holomorphic on the annulus

$$
U=\{z \in \mathbb{C}|0<|z-1|<1\} .
$$

Therefore it has a Laurent expansion centred at one which converges on the annulus. As before, we write

$$
\frac{1}{(z-1)(z-2)}=\frac{1}{z-2}-\frac{1}{z-1} .
$$

Note that this is the decomposition into a function holomorphic for $|z-1|<1$ and a function holomorphic for $|z-1|>0$ vanishing at infinity. We have

$$
\begin{aligned}
\frac{1}{z-2} & =-\frac{1}{2-z} \\
& =-\frac{1}{1-(z-1)} \\
& =-1-(z-1)-(z-1)^{2}+(z-1)^{3}+\ldots
\end{aligned}
$$

Thus

$$
\frac{1}{(z-1)(z-2)}=-\frac{1}{z-1}-1-(z-1)-(z-1)^{2}+(z-1)^{3}+\ldots .
$$

We now turn to the problem of finding a formula for the coefficients of a Laurent expansion

$$
f(z)=\sum_{k} a_{k}(z-a)^{k} .
$$

Recall that, if m is an integer then

$$
\oint_{|z-a|=r}(z-a)^{m} \mathrm{~d} z= \begin{cases}2 \pi i & \text { if } m=-1 \\ 0 & \text { otherwise }\end{cases}
$$

We did the case $a=0$ and the general case is just as straightforward. Now we can compute the coefficients. If $m \geq 0$ is an integer then we
have

$$
\begin{aligned}
\oint_{|z|=r} f(z)(z-a)^{m} \mathrm{~d} z & =\oint_{|z|=r}\left(\sum_{k=-\infty}^{\infty} a_{k}(z-a)^{k}\right) z^{m} \mathrm{~d} z \\
& =\oint_{|z|=r} \sum_{k=-\infty}^{\infty} a_{k}(z-a)^{m+k} \mathrm{~d} z \\
& =\sum_{k=-\infty}^{\infty} a_{k} \oint_{|z|=r}(z-a)^{m+k} \mathrm{~d} z \\
& =2 \pi i a_{-1-m}
\end{aligned}
$$

since the integral on the penultimate line is non-zero only if the exponent

$$
m+k=-1 \quad \text { so that } \quad k=-m-1
$$

Thus

$$
\begin{aligned}
a_{k} & =\frac{1}{2 \pi i} \oint_{|z|=r} f(z)(z-a)^{-k-1} \mathrm{~d} z \\
& =\frac{1}{2 \pi i} \oint_{|z|=r} \frac{f(z)}{(z-a)^{k+1}} \mathrm{~d} z .
\end{aligned}
$$

