
19. Laurent Series

If a holomorphic function is defined on an open disk it has a power
series representation on that disk. What can we say about functions
holomorphic on an annulus?

Definition 19.1. If a ∈ C and σ < ρ, belonging to [0,∞], then the
region

U = { z ∈ C |σ < |z − a| < ρ }
is called an annulus.

In short, an annulus is the region between two circles. Note that this
region is not simply connected, it has a hole in the middle. It is the
simplest region not conformally equivalent to the unit disk.

Observe that there are two interesting extremes. If σ = 0 we are
just excluding a. Thus we have a punctured disk. If ρ = ∞ we have
a neighbourhood of infinity. If σ = 0 and ρ = ∞ then we have U =
C− {a}, the punctured plane.

Example 19.2. The function

z +
1

z
is holomorphic on the annulus U = C− {0}.

It cannot be represented by a power series, since it is not holomorphic
at 0. Nor does it have a power series expansion at ∞, since it not
holomorphic at ∞. Indeed

g(w) = f

(
1

w

)
=

1

w
+ w

is not holomorphic at 0.
However it is the sum of a power series centred at 0, with radius of

convergence ρ =∞ and a power series expansion at ∞, with radius of
convergence 1/σ =∞.

Theorem 19.3. Let f : U −→ C be a holomorphic function on the
annulus

U = { z ∈ C |σ < |z − a| < ρ }.
Then there are two holomorphic functions f0 and f∞ such that

f(z) = f0(z) + f∞(z),

where f0(z) is holomorphic on the open disk centred at a of radius ρ
and f∞(z) is holomorphic outside the closed disk centred at a of radius
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σ. If we require in addition that f∞(z) is zero at infinity then f0(z)
and f∞(z) are unique with this property.

Moreover

f0 =
∑
k≥0

ak(z − a)k and f∞ =
∑
k<0

ak(z − a)k.

It follows that we may write

f(z) =
∑
k

ak(z − a)k

= · · ·+ a−3
(z − a)3

+
a−2

(z − a)2
+

a−1
z − a

+ a0 + a1(z − a) + a2(z − a)2 + a3(z − a)3 + . . . .

where the summation is over all of the integers.

The doubly infinite series is called a Laurent series.

Example 19.4. Consider the function

f(z) =
1

(z − 1)(z − 2)
.

This is holomorphic on the annulus

U = { z ∈ C | 1 < |z| < 2 }.
Therefore it has a Laurent expansion centred at zero which converges
on the annulus. To find the Laurent expansion, we use the method of
partial fractions.

1

(z − 1)(z − 2)
=

1

z − 2
− 1

z − 1
.

Note that this is the decomposition into a function holomorphic for
|z| < 2 and a function holomorphic for |z| > 1 vanishing at infinity.
We have

1

z − 2
= −1

2

1

1− z/2

= −1

2
− z

4
− z2

8
+ . . . .

On the other hand
1

z − 1
=

1

z

1

1− 1/z

=
1

z
+

1

z2
+

1

z3
+ . . . .

Thus

1

(z − 1)(z − 2)
= · · · − 1

z3
− 1

z2
− 1

z
− 1

2
− z

4
− z2

8
+ . . . .
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Proof of (19.3). We first address uniqueness of the decomposition. Sup-
pose that

f(z) = f0(z) + f∞(z) = g0(z) + g∞(z),

are two ways to write f as a combination of a holomorphic function on
the open disk |z − a| < ρ and on the region |z − a| > σ, where both
f∞(z) and g∞(z) vanish at ∞.

We have
f0(z)− g0(z) = g∞(z)− f∞(z).

Call the common function h(z). The function on the LHS is holomor-
phic for |z − a| < ρ. So h(z) is holomorphic for |z − a| < ρ. The
function on the RHS is holomorphic for |z−a| > σ and vanishes at∞.
Therefore h(z) is holomorphic for |z − a| > σ and vanishes at ∞.

As for every complex number z we either have |z−a| < ρ or |z−a| > σ
(or both, on the annulus), it follows that h(z) is entire. As h(z) is
holomorphic at infinity, it is bounded. Therefore Liouville’s theorem
implies that h(z) is constant. As h(z) vanishes at infinity, it follows
that h(z) = 0.

But then

f0(z) = g0(z) and g∞(z) = f∞(z).

This gives us uniqueness.
We now turn to existence. Pick two circles of radii

σ < s < r < ρ.

Cauchy’s integral formula applied to (the smaller) annulus reads

f(z) =
1

2πi

∮
|w−a|=r

f(w)

w − z
dw − 1

2πi

∮
|w−a|=s

f(w)

w − z
dw.

The function

f0(z) =
1

2πi

∮
|w−a|=r

f(w)

w − z
dw

is holomorphic for |z − a| < r and the function

f∞(z) =
1

2πi

∮
|w−a|=s

f(w)

w − z
dw

is holomorphic for |z−a| > s and tends to zero as z approaches infinity
(see homework 7, problem 1, for the fact that we get holomorphic
functions).

Since we can choose s and r as close to σ and ρ as we please, without
changing f0(z) and f∞(z), it follows that f0(z) is holomorphic on the
open disk centred at a of radius ρ and f∞(z) is holomorphic outside
the closed disk centred at a of radius σ. �

3



Example 19.5. Consider the function

f(z) =
1

(z − 1)(z − 2)
.

Now let us consider what happens when we expand it as a Laurent
series centred at 1. It is not holomorphic at z = 1 and at z = 2. It is
holomorphic on the annulus

U = { z ∈ C | 0 < |z − 1| < 1 }.

Therefore it has a Laurent expansion centred at one which converges
on the annulus. As before, we write

1

(z − 1)(z − 2)
=

1

z − 2
− 1

z − 1
.

Note that this is the decomposition into a function holomorphic for
|z − 1| < 1 and a function holomorphic for |z − 1| > 0 vanishing at
infinity. We have

1

z − 2
= − 1

2− z

= − 1

1− (z − 1)

= −1− (z − 1)− (z − 1)2 + (z − 1)3 + . . . .

Thus

1

(z − 1)(z − 2)
= − 1

z − 1
− 1− (z − 1)− (z − 1)2 + (z − 1)3 + . . . .

We now turn to the problem of finding a formula for the coefficients
of a Laurent expansion

f(z) =
∑
k

ak(z − a)k.

Recall that, if m is an integer then∮
|z−a|=r

(z − a)m dz =

{
2πi if m = −1

0 otherwise.

We did the case a = 0 and the general case is just as straightforward.
Now we can compute the coefficients. If m ≥ 0 is an integer then we
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have ∮
|z|=r

f(z)(z − a)m dz =

∮
|z|=r

(
∞∑

k=−∞

ak(z − a)k

)
zm dz

=

∮
|z|=r

∞∑
k=−∞

ak(z − a)m+k dz

=
∞∑

k=−∞

ak

∮
|z|=r

(z − a)m+k dz

= 2πia−1−m.

since the integral on the penultimate line is non-zero only if the expo-
nent

m+ k = −1 so that k = −m− 1

Thus

ak =
1

2πi

∮
|z|=r

f(z)(z − a)−k−1 dz

=
1

2πi

∮
|z|=r

f(z)

(z − a)k+1
dz.

5


	19. Laurent Series

