20. Isolated Singularities

Definition 20.1. Let $f: U \longrightarrow \mathbb{C}$ be a holomorphic function on a region U. Let $a \notin U$.

We say that a is an isolated singularity of f if U contains a punctured neighbourhood of a.

Note that $\log z$ does not have an isolated singularity at 0 , since we have to remove all of $(-\infty, 0]$ to get a continuous function. By contrast its derivative $1 / z$ is holomorphic except at 0 and so it has an isolated singularity at 0 .

Suppose that f has an isolated singularity at a. As a punctured neighbourhood of a is a special type of annulus, f has a Laurent expansion centred at a,

$$
f(z)=\sum_{k=-\infty}^{\infty} a_{k}(z-a)^{k}
$$

valid for

$$
0<|z-a|<r
$$

for some real r.
The behaviour at a is dictated by the negative part of the Laurent expansion.

Definition 20.2. If f has an isolated singularity at a and all of the coefficients a_{k} of the Laurent expansion

$$
f(z)=\sum_{k=-\infty}^{\infty} a_{k}(z-a)^{k}
$$

vanish if $k<0$, then we say that f has a removable singularity.
If f has a removable singularity then in fact we can extend f to a holomorphic function in a neighbourhood of a. Indeed, the Laurent expansion of f is a power series expansion, and this defines a holomorphic function in a neighbourhood of a.

Example 20.3. The function

$$
\frac{\sin z}{z}
$$

has a removable singularity at a.

Indeed,

$$
\begin{aligned}
\frac{\sin z}{z} & =\frac{1}{z}\left(z-\frac{z^{3}}{3!}+\frac{z^{3}}{5!}+\ldots\right) \\
& =1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}+\ldots
\end{aligned}
$$

is the Laurent series expansion of $\sin z / z$. Visibly there are no negative terms, so visibly

$$
\frac{\sin z}{z}
$$

extends to a holomorphic function.
Theorem 20.4 (Riemann's theorem on removable singularities). Let $f(z)$ be a holomorphic function which has an isolated singularity at a.

Then $f(z)$ has a removable singularity at a if and only if $f(z)$ is bounded near a.

Proof. One direction is clear. If $f(z)$ is holomorphic at a then it is bounded at a.

Now suppose that $f(z)$ is bounded near a. Consider the Laurent expansion of f centred at a :

$$
f(z)=\sum_{k} a_{k}(z-a)^{k} .
$$

Note that

$$
a_{k}=\frac{1}{2 \pi i} \oint_{|z-a|=r} \frac{f(z)}{(z-a)^{k+1}} \mathrm{~d} z
$$

for any sufficiently small circle of radius r centred at a. We have

$$
\left|a_{k}\right| \leq L M,
$$

where L is the length of the circle and M is the largest value of the absolute value of $f(z)$.

The length L of the circle is $2 \pi r$. By hypothesis there is a constant M_{0} such that

$$
|f(z)| \leq M_{0}
$$

near a. Thus

$$
\begin{aligned}
\left|\frac{f(z)}{z^{n+1}}\right| & =\frac{|f(z)|}{\left|z^{n+1}\right|} \\
& =\frac{|f(z)|}{r^{n+1}} \\
& \leq \frac{M_{0}}{r^{n+1}} .
\end{aligned}
$$

(16.2) implies that

$$
\begin{aligned}
\left|a_{n}\right| & =\left|\frac{1}{2 \pi i} \oint_{|z|=r} \frac{f(z) \mathrm{d} z}{z^{n+1}}\right| \\
& \leq L M \\
& \leq 2 \pi r \frac{M_{0}}{2 \pi r^{n+1}} \\
& =\frac{M_{0}}{r^{n}} .
\end{aligned}
$$

As r tends to zero the last quantity tends to zero if $n<0$. The only possibility is that

$$
\left|a_{n}\right|=0 \quad \text { so that } \quad a_{n}=0
$$

Thus $f(z)$ is given by a convergent power series close to a, so that f extends to a holomorphic function near a.

Definition 20.5. If f has an isolated singularity at a and all of the coefficients a_{k} of the Laurent expansion

$$
f(z)=\sum_{k=-\infty}^{\infty} a_{k}(z-a)^{k}
$$

vanish if $k<-n$ but $a_{-n} \neq 0$ then we say that f has a pole of order n at a.

Example 20.6. The function

$$
\frac{\cos z}{z}
$$

has a pole of order 1 at 0.
Theorem 20.7. Let $f(z)$ be a holomorphic function with an isolated singularity at a.

The following are equivalent:
(1) f has a pole of order n at a.
(2) there is a function $g(z)$ holomorphic and non-zero at a such that

$$
f(z)=\frac{g(z)}{(z-a)^{n}}
$$

(3) The function

$$
\frac{1}{f(z)}
$$

is holomorphic at a and has a zero of order n at a.

Proof. Suppose that (1) holds, suppose that f has a pole of order n. Then the Laurent expansion of f looks like
$f(z)=\frac{a_{-n}}{(z-a)^{n}}+\frac{a_{-n+1}}{(z-a)^{n-1}}+\cdots+\frac{a_{-1}}{(z-a)}+a_{0}+a_{1}(z-a)+a_{2}(z-a)^{2}+\ldots$.
Let

$$
g(z)=a_{-n}+a_{-n+1}(z-a)+a_{-n+2}(z-a)^{2}+\ldots
$$

Then g is holomorphic at a and we have

$$
f(z)=\frac{g(z)}{(z-a)^{n}} .
$$

Note that

$$
g(a)=a_{-n} \neq 0 .
$$

Now suppose that (2) holds. Then

$$
\frac{1}{f(z)}=\frac{(z-a)^{n}}{g(z)}
$$

As $g(a) \neq 0$ this is holomorphic at a.
Now suppose that (3) holds. Then we may write

$$
\frac{1}{f(z)}=(z-a)^{n} g(z)
$$

where $g(z)$ is holomorphic and non-zero at a. In this case

$$
f(z)=\frac{1}{(z-a)^{n}} h(z)
$$

where

$$
h(z)=\frac{1}{g(z)}
$$

is holomorphic at a. As $h(z)$ is holomorphic at a, it has a power series expansion

$$
h(z)=\sum_{k \geq 0} a_{k}(z-a)^{k} .
$$

As $h(z)$ is the reciprocal of a non-zero function $a_{0} \neq 0$. Dividing through by $(z-a)^{n}$ we get

$$
f(z)=\frac{a_{0}}{(z-a)^{n}}+\frac{a_{1}}{(z-a)^{n-1}}+\ldots
$$

This is a Laurent series expansion starting in degree $-n$ so that f has a pole of order n.

The final possibility for an isolated singularity is:

Definition 20.8. Let f be a holomorphic function with an isolated singularity at a.

We say that a is an essential singularity of $f(z)$ if the Laurent series expansion has infinitely many non-zero negative terms.
Example 20.9.

$$
\sin \left(\frac{1}{z}\right)
$$

has an essential singularity at 0 .
Indeed

$$
\sin \left(\frac{1}{z}\right)=\cdots+\frac{1}{5!z^{5}}-\frac{1}{3!z^{3}}+\frac{1}{z} .
$$

