20. **Isolated Singularities**

Definition 20.1. Let \(f : U \to \mathbb{C} \) be a holomorphic function on a region \(U \). Let \(a \notin U \).

We say that \(a \) is an **isolated singularity** of \(f \) if \(U \) contains a punctured neighbourhood of \(a \).

Note that \(\log z \) does not have an isolated singularity at 0, since we have to remove all of \((-\infty, 0]\) to get a continuous function. By contrast its derivative \(1/z \) is holomorphic except at 0 and so it has an isolated singularity at 0.

Suppose that \(f \) has an isolated singularity at \(a \). As a punctured neighbourhood of \(a \) is a special type of annulus, \(f \) has a Laurent expansion centred at \(a \),

\[
f(z) = \sum_{k=-\infty}^{\infty} a_k (z - a)^k,
\]

valid for

\[0 < |z - a| < r,\]

for some real \(r \).

The behaviour at \(a \) is dictated by the negative part of the Laurent expansion.

Definition 20.2. If \(f \) has an isolated singularity at \(a \) and all of the coefficients \(a_k \) of the Laurent expansion

\[
f(z) = \sum_{k=-\infty}^{\infty} a_k (z - a)^k,
\]

vanish if \(k < 0 \), then we say that \(f \) has a **removable singularity**.

If \(f \) has a removable singularity then in fact we can extend \(f \) to a holomorphic function in a neighbourhood of \(a \). Indeed, the Laurent expansion of \(f \) is a power series expansion, and this defines a holomorphic function in a neighbourhood of \(a \).

Example 20.3. The function

\[
\frac{\sin z}{z}
\]

has a removable singularity at \(a \).
Indeed,
\[
\frac{\sin z}{z} = \frac{1}{z} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} + \ldots \right)
= 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \ldots,
\]
is the Laurent series expansion of \(\frac{\sin z}{z} \). Visibly there are no negative terms, so visibly
\[
\frac{\sin z}{z}
\]
extends to a holomorphic function.

Theorem 20.4 (Riemann’s theorem on removable singularities). Let \(f(z) \) be a holomorphic function which has an isolated singularity at \(a \).

Then \(f(z) \) has a removable singularity at \(a \) if and only if \(f(z) \) is bounded near \(a \).

Proof. One direction is clear. If \(f(z) \) is holomorphic at \(a \) then it is bounded at \(a \).

Now suppose that \(f(z) \) is bounded near \(a \). Consider the Laurent expansion of \(f \) centred at \(a \):
\[
f(z) = \sum_k a_k (z - a)^k.
\]

Note that
\[
a_k = \frac{1}{2\pi i} \oint_{|z-a|=r} \frac{f(z)}{(z-a)^{k+1}} \, dz,
\]
for any sufficiently small circle of radius \(r \) centred at \(a \). We have
\[
|a_k| \leq LM,
\]
where \(L \) is the length of the circle and \(M \) is the largest value of the absolute value of \(f(z) \).

The length \(L \) of the circle is \(2\pi r \). By hypothesis there is a constant \(M_0 \) such that
\[
|f(z)| \leq M_0,
\]
near \(a \). Thus
\[
\left| \frac{f(z)}{z^{n+1}} \right| = \left| \frac{f(z)}{|z^{n+1}|} \right|
= \frac{|f(z)|}{r^{n+1}}
\leq \frac{M_0}{r^{n+1}},
\]
(16.2) implies that

\[|a_n| = \left| \frac{1}{2\pi i} \oint_{|z|=r} \frac{f(z) \, dz}{z^{n+1}} \right| \leq LM \leq 2\pi r \frac{M_0}{2\pi r^{n+1}} = \frac{M_0}{r^n}. \]

As \(r \) tends to zero the last quantity tends to zero if \(n < 0 \). The only possibility is that

\[|a_n| = 0 \quad \text{so that} \quad a_n = 0. \]

Thus \(f(z) \) is given by a convergent power series close to \(a \), so that \(f \) extends to a holomorphic function near \(a \). \(\square \)

Definition 20.5. If \(f \) has an isolated singularity at \(a \) and all of the coefficients \(a_k \) of the Laurent expansion

\[f(z) = \sum_{k=-\infty}^{\infty} a_k(z - a)^k, \]

vanish if \(k < -n \) but \(a_{-n} \neq 0 \) then we say that \(f \) has a **pole of order** \(n \) at \(a \).

Example 20.6. The function

\[\frac{\cos z}{z} \]

has a pole of order 1 at 0.

Theorem 20.7. Let \(f(z) \) be a holomorphic function with an isolated singularity at \(a \).

The following are equivalent:

1. \(f \) has a pole of order \(n \) at \(a \).
2. there is a function \(g(z) \) holomorphic and non-zero at \(a \) such that

\[f(z) = \frac{g(z)}{(z - a)^n}. \]

3. The function

\[\frac{1}{f(z)} \]

is holomorphic at \(a \) and has a zero of order \(n \) at \(a \).
Proof. Suppose that (1) holds, suppose that f has a pole of order n. Then the Laurent expansion of f looks like

$$f(z) = \frac{a_{-n}}{(z-a)^n} + \frac{a_{-n+1}}{(z-a)^{n-1}} + \cdots + \frac{a_1}{(z-a)} + a_0 + a_1(z-a) + a_2(z-a)^2 + \ldots.$$

Let

$$g(z) = a_{-n} + a_{-n+1}(z-a) + a_{-n+2}(z-a)^2 + \ldots.$$

Then g is holomorphic at a and we have

$$f(z) = \frac{g(z)}{(z-a)^n}.$$

Note that

$$g(a) = a_{-n} \neq 0.$$

Now suppose that (2) holds. Then

$$\frac{1}{f(z)} = \frac{(z-a)^n}{g(z)}.$$

As $g(a) \neq 0$ this is holomorphic at a.

Now suppose that (3) holds. Then we may write

$$\frac{1}{f(z)} = (z-a)^n g(z),$$

where $g(z)$ is holomorphic and non-zero at a. In this case

$$f(z) = \frac{1}{(z-a)^n} h(z)$$

where

$$h(z) = \frac{1}{g(z)}$$

is holomorphic at a. As $h(z)$ is holomorphic at a, it has a power series expansion

$$h(z) = \sum_{k \geq 0} a_k (z-a)^k.$$

As $h(z)$ is the reciprocal of a non-zero function $a_0 \neq 0$. Dividing through by $(z-a)^n$ we get

$$f(z) = \frac{a_0}{(z-a)^n} + \frac{a_1}{(z-a)^{n-1}} + \ldots.$$

This is a Laurent series expansion starting in degree $-n$ so that f has a pole of order n.

The final possibility for an isolated singularity is:
Definition 20.8. Let \(f \) be a holomorphic function with an isolated singularity at \(a \).

We say that \(a \) is an essential singularity of \(f(z) \) if the Laurent series expansion has infinitely many non-zero negative terms.

Example 20.9.

\[
\sin \left(\frac{1}{z} \right)
\]

has an essential singularity at 0.

Indeed

\[
\sin \left(\frac{1}{z} \right) = \cdots + \frac{1}{5!z^5} - \frac{1}{3!z^3} + \frac{1}{z}.
\]