
3. Complex exponentials

The exponential function from real variable has a power series ex-
pansion

ex = 1 + x+
x2

2
+
x3

3!
+ . . . .

Let us make a leap of faith and simply replace the real number x by
the complex number z.

Definition 3.1. The exponential function is the function

C −→ C given by z −→ ez,

where

ez = 1 + z +
z2

2
+
z3

3!
+ . . . .

For the time being we will ignore all issues of convergence. It is clear
how to define the sine and cosine

Definition 3.2. The sine function is the function

C −→ C given by z −→ sin z,

where

sin z = z − z3

3!
+ . . . .

Similarly

Definition 3.3. The cosine function is the function

C −→ C given by z −→ cos z,

where

cos z = 1− z2

2!
+
z4

4!
+ . . . .

These three functions clearly extend the usual three functions. Sup-
pose we substitute iz for z;

eiz = 1 + iz +
(iz)2

2
+

(iz)3

3!
+

(iz)4

4!
+ · · ·+ (iz)n

n!
+ . . .

= 1 + iz +
−z2

2
+
−iz3

3!
+
z4

4!
+ · · ·+ inzn

n!
+ . . .

= 1 +
−z2

2
+
z4

4!
+ · · ·+ iz +

−iz3

3!
+
iz5

5!
+ . . .

= 1− z2

2
+
z4

4!
+ · · ·+ i(z − z3

3!
+
z5

5!
+ . . . )

= cos z + i sin z.
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Now suppose we replace z by the real number θ. Then we get a very
famous formula due to Euler:

eiθ = cos θ + i sin θ.

This makes using polar coordinates very easy:

z = r cos θ + ri sin θ

= r(cos θ + i sin θ)

= reiθ.

It is fun to plug in simple values of θ, with r = 1, to see what we
get. If we plug in θ = 0 we get

1 = cos 0 + i sin 0

= ei0;

for θ = π/2 we get

i = cosπ/2 + i sin π/2

= eiπ/2;

θ = π/4 we get

1√
2

(1 + i) = cos π/4 + i sinπ/4

= eiπ/4;

θ = π/3 we get

1

2

(
1 +
√

3
)

= cosπ/3 + i sin π/3

= eiπ/3,

and so on.
Perhaps the most interesting value to try is θ = π. We get

−1 = cos π + i sin π

= eiπ.

Rearranging gives one of the most beautiful formulas in all of mathe-
matics

eiπ + 1 = 0.

The five fundamental constants of mathematics

1 0 π e and i,

connected by one single equation.
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The most convenient aspect of this way to represent complex number
is that it is easy to multiply and at the same time it gives geometric
meaning to multiplication. The key identity is what happens when you
multiply two complex numbers of modulus one:

eiα · eiβ = ei(α+β).

In words just add the angles.
Assuming this formula for the time being, we get a simple way to

multiply two complex numbers

z1 = r1e
iθ1 and z2 = r2e

iθ2 .

We have

z1z2 = (r1e
iθ1)(r2e

iθ2)

= r1r2e
iθ1eiθ2

= r1r2e
iθ1+θ2 .

In words multiply the modulus (the usual way) and add the argument.
Since

i = eiπ/2

multiplication by i represents rotation through π/2. More generally,
multiplication by a complex number of modulus one represents rotation
about the origin through the argument.

We now turn to a justification of the formula. We start with a
mundane proof and then to indicate how to give a more interesting
proof. For the straightforward proof, we just use the addition formula:

cos(α + β) = cosα cos β − sinα sin β

sin(α + β) = cosα sin β + sinα cos β.

We have

eiα · eiβ = (cosα + i sinα)(cos β + i sin β)

= (cosα cos β − sinα sin β) + i(cosα sin β + sinα cos β)

= cos(α + β) + i sin(α + β)

= ei(α+β).

To illustrate how to give a different proof of the above formula, we
give two different ways to prove the identity:

cos2 z + sin2 z = 1.

The first method uses the fact that this identity is well-known if z is a
real number.
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Both sides expand to power series in z and we just have to show that
these power series∑

anz
n and

∑
bnz

n = 1

are equal. Now the power series on the RHS is the trivial one,

bn =

{
1 if n = 0

0 if n > 0.

So we just need to show the power series on the LHS is the same trivial
power series. If we substitute in the value z = x then we do get equality

cos2 x+ sin2 x = 1.

This gives an equality of power series∑
anx

n = 1.

But then

an =

{
1 if n = 0

0 if n > 0.

It follows that ∑
anz

n = 1.

But then

cos2 z + sin2 z = 1.

The key point is that a power series∑
anz

n

is determined by its values on the real line. In fact a power series is
determined by its value at infinitely many points. Compare this with
polynomials of degree n which are uniquely determined by their value
at n+ 1 different points.

There is a second way to establish the same identity. We have

eiz = cos z + i sin z

e−iz = cos z − i sin z.

If we multiply both equations we get

1ei0

eix · e−iz

(cos z + i sin z)(cos z − i sin z)

cos2 z + sin2 z.
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We now how to use the method of power series to prove

eiα · eiβ = ei(α+β).

We start with the observation that it is enough to prove the much
stronger result:

ez1 · ez2 = ez1+z2

for any pair of complex numbers. Of course this rule is well-known for
real variable

ex1 · ex2 = ex1+x2 .

To multiply two powers, add the exponents.
We use the same trick as before, using power series. The only com-

plication is that now we have two variables. We fix one, lets says z2
and we consider the other one z1 as a variable z. We want to show

ez · ez2 = ez+z2 .

Thus is the same as an equality of power series. The problem is that
to reduce to the real case, we need to assume that z2 = x2 is real. If we
now put z = x a real number then we get equality. So now we know

ez · ex2 = ez+x2 ,

where x is a real number. In particular we now know

exeiy = ex+iy.

One can keep going this way. The argument can be made to work but
it has become somewhat absurd.
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