4. Roots of unity

Theorem 4.1 (De Moivre's Theorem).

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

Proof. We have

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{n} & =\left(e^{i \theta}\right)^{n} \\
& =e^{i n \theta} \\
& =\cos n \theta+i \sin n \theta
\end{aligned}
$$

One can use this to derive simple formulas. For example suppose we want to compute triple angle formulas. We use (4.1) to when $n=3$. We can expand the LHS using the binomial theorem.

$$
(\cos \theta+i \sin \theta)^{3}=\cos ^{3} \theta+3 i \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-i \sin ^{3} \theta .
$$

Equating real and imaginary parts we get

$$
\begin{aligned}
& \cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \\
& \sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta .
\end{aligned}
$$

We can also use Euler's formula to compute nth roots.
Example 4.2. What are the cube roots of 125 ?
We are looking for complex numbers z such that

$$
z^{3}=125 .
$$

We write z in polar form

$$
z=r e^{i \theta}
$$

Then we get the equation

$$
r^{3} e^{3 i \theta}=125 .
$$

Taking the modulus of both sides we see that

$$
r^{3}=125 .
$$

As r is a non-negative real number it follows that

$$
r=5 .
$$

If we cancel 125 from both sides, we are reduced to solving

$$
e^{3 i \theta}=1,
$$

that is, we are trying to find all cube roots of 1.

What are the possible arguments of such complex numbers? One possibility is clear, $\theta=0$. In other words, 1 is a cube root of one. Another possibility is that

$$
3 \theta=2 \pi
$$

so that when we add θ to itself we go once around the origin. This gives the solution

$$
\theta=\frac{2 \pi}{3} .
$$

It follows that

$$
\omega=\frac{1}{2}(-1+\sqrt{3} i)
$$

is a cube root of one.
A third possibility is that we go twice around the origin, so that

$$
3 \theta=4 \pi \quad \text { and } \quad \theta=\frac{4 \pi}{3}
$$

In this case we get the last cube root of one

$$
\omega^{\prime}=\frac{1}{2}(-1-i \sqrt{3}) .
$$

Note some interesting connections between the roots. First off ω^{\prime} is the complex conjugate of ω :

$$
\omega^{\prime}=\bar{\omega} .
$$

In fact it is a general fact that the roots of a real polynomial come in complex conjugate pairs.
Lemma 4.3. Let $p(x)$ be a real polynomial.
Then the roots of $p(x)$ come in complex conjugate pairs.
Proof. We may suppose that

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers. Let α be a root of $p(x)$. We have

$$
\begin{aligned}
p(\bar{\alpha}) & =a_{n}(\bar{\alpha})^{n}+a_{n-1}(\bar{\alpha})^{n-1}+\cdots+a_{0} \\
& =a_{n} \overline{\alpha^{n}}+a_{n-1} \overline{\alpha^{n-1}}+\cdots+a_{0} \\
& =\overline{a_{n} \alpha^{n}}+\overline{a_{n-1} \alpha^{n-1}}+\cdots+\overline{a_{0}} \\
& =\overline{a_{n} \alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{0}} \\
& =\overline{p(\alpha)} \\
& =\overline{0} \\
& =0 .
\end{aligned}
$$

Thus $\bar{\alpha}$ is also a root of $p(x)$.

For example, for the polynomial

$$
z^{3}-1=(z-1)(z-\omega)\left(z-\omega^{\prime}\right)
$$

if we take the complex conjugate, the LHS is unchanged. On the RHS, 1 is fixed and so complex conjugation must switch ω and ω^{\prime}.

Secondly note that

$$
\omega^{\prime}=\omega^{2}
$$

This is again a general fact:
Lemma 4.4. If ζ is an nth root of unity then so are all powers of ζ.
Proof. Consider $\alpha=\zeta^{a}$, where a is a non-negative integer. We have

$$
\begin{aligned}
\alpha^{n} & =\left(\zeta^{a}\right)^{n} \\
& =\zeta^{a n} \\
& =\left(\zeta^{n}\right)^{a} \\
& =1^{a} \\
& =1 .
\end{aligned}
$$

Note that there is a simple relation between ω and $\omega^{\prime}=\omega^{2}$. Playing around a little bit one sees that

$$
-\omega^{2}=1+\omega,
$$

so that

$$
\omega^{2}+\omega+1=0 .
$$

In fact

$$
z^{3}-1=(z-1)\left(z^{2}+z+1\right),
$$

as can be seen from direct calculation.
There are similar pictures for 4 th and 5 th roots. The 4th roots are ± 1 and $\pm i . i$ and $-i$ are complex conjugates.

$$
i=e^{i \pi / 2}
$$

and the other roots are powers of i :

$$
i=i^{1} \quad-1=i^{2} \quad-i=i^{3} \quad \text { and } \quad 1=i^{4} .
$$

± 1 are the square roots of 1 . In fact we have

$$
\begin{aligned}
z^{4}-1 & =\left(z^{2}-1\right)\left(z^{2}+1\right) \\
& =(z-1)(z+1)\left(z^{2}+1\right) .
\end{aligned}
$$

$\pm i$ are roots of $z^{2}+1$.
The fifth roots of 1 are

$$
e^{i 2 m \pi / 5},
$$

where $m=0,1,2,3$ and 4 . These are all powers of

$$
\zeta=e^{i 2 \pi / 5}
$$

ζ and ζ^{4} are complex conjugates and so are ζ^{2} and ζ^{3}. We have

$$
z^{5}-1=(z-1)\left(z^{4}+z^{3}+z^{2}+1\right)
$$

so that ζ is a root of

$$
z^{4}+z^{3}+z^{2}+1
$$

