
8. Sequence and series

We would like to work with power series, which means that we have
to view sequences and series from the perspective of the complex num-
bers. This really isn’t very different to what happens for the real num-
bers.

It is important to realise the issue we have to face:

Example 8.1. The alternating harmonic series
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diverges to infinity.

Recall that for a series to converge, the sequence of partial sums
should converge to a limit. One way to show that a series converges or
diverges is to compare it with an integral.

Proposition 8.2. Let s be a positive real.
The series
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converges if and only if s > 1.

Proof. Let’s first see divergence if s ≤ 1. I claim that the series
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diverges to infinity if s ≤ 1. Note that if t ≤ s then
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So actually it is enough to show that
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diverges. Consider the function

f : R −→ R given by f(x) =
1

x
.
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As f(x) is a decreasing function,
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is a Riemann sum for the integral∫ m
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which is larger than the actual integral. But∫ m
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dx =

[
lnx

]m
1

= lnm− ln 1

= lnm.

Now lnm approaches infinity as m approaches infinity. So the har-
monic series diverges.

We now turn to convergence. We use the same trick but the other
way around. Consider the function

f : R −→ R given by f(x) =
1

xs
.

As f(x) is a decreasing function,
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As s > 1 the second fraction converges to zero. But then the integral
converges as m goes to infinity, so that the series converges. �

Note that
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Thus
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which converges, by (8.2).
Thus the harmonic series diverges but the alternating harmonic series

converges.

Definition 8.3. We say that a series
∑
an is absolutely convergent

if
∑
|an| is a convergent series.

We say that a series
∑
an is conditionally convergent if it is

convergent but not absolutely convergent.

The alternating harmonic series is conditionally convergent.

Theorem 8.4. If
∑
an is conditionally convergent and s is a real num-

ber or ±∞ then we may rearrange the terms so that sum
∑
bn converges

to s.

Proof. We start with some basic obervations. We make two bags (or
more formally sets), a positive bag and a negative bag. We put the
positive terms into the positive bag and we put the absolute value of
the negative terms into the negative bag:

P = { an | an ≥ 0 }
N = {−an | an < 0 }.

(For the alternating harmonic series, P contains the reciprocal of the
odd natural numbers and N contains the reciprocals of the even natural
numbers). For the time being we assume that none of the terms are
zero (the zero terms are an annoying little detail).

As
∑
|an| diverges, the contents of both bags sums to infinity. It

follows that the contents of at least one of the bags is infinite. As∑
an converges the only possibility is that the content of both bags is

infinite.
Lets order the elements of both bags in a decreasing sequence:

p1 ≥ p2 ≥ p3 . . . and n1 ≥ n2 ≥ n3 . . . .

As
∑
an is convergent we must have limn→∞ an = 0, the terms ap-

proach zero. It follows that both

lim
n→∞

pn = 0 and lim
k→∞

nk = 0.
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Let’s arrange for the sum
∑
bn to be at least a million. Look at the

largest element of the negative bag n1. Let’s suppose it is a billion. As
the content of the positive bag is infinite, if we keep pulling selecting
terms from the positive bag, we eventually get a partial sum sm of
at least a million plus a billion. At that point we take −n1 from the
negative bag. Now the partial sum sm − n1 is at least a million.

Now we inspect the second element of the negative bag, n2. If sm −
n1 − n2 is bigger than a million then we just take n2 from the bag,
so that the partial sum is now sm − n1 − n2 and we inspect the third
element of the negative bag n3. We continue in this way until the
point when we cannot remove any more numbers from the negative
bag without going under a million.

Now we look to see how much is left in the positive bag. We removed
much more than a billion. However, since the positive bag contained
an infinite amount to begin with, it still contains an infinite amount.
So if we keep selecting elements of the positive bag we eventually get
to a sum sufficiently bigger than a million than we can select the next
element of the negative bag.

If we continue in this way, it is not too hard to see that we converge to
a number bigger than a million. In fact if you think about it carefully,
the sum will converge to exactly a million. Of course there is nothing
special about a million. We can make

∑
bn converge to any limit s.

Finally note that we do exhaust the terms in both bags. Even though
we (presumably) pull terms from the positive bag faster than we pull
them from the negative bag, it is not hard to see that eventually we
pull everything from the negative bag.

There a couple of small details. First off the bags aren’t really sets,
since we allow duplication. This is a minor point and is easily taken
care of.

We also have to deal with the case that some of the terms are zero.
We make one more bag, and put the zero terms into this bag. Every
third time we pull an element from the bag, we take it from the zero
bag, if we are able (that is, if the zero bag is not empty). This never
changes the partial sum and we only do this to make sure we really do
have a rearrangement of a1, a2, . . . . �

The moral of (8.4) is that if you rearrange the terms of a condition-
ally convergent series then the sum won’t necessarily stay the same.
Fortunately we do have

Theorem 8.5. Let
∑
an be an absolutely convergent series.

If
∑
bn is a rearrangement of the series

∑
an then

∑
bn converges

to the same limit as
∑
an.
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In words, you can rearrange the terms of an absolutely convergent
series without changing the sum.

Definition 8.6. Let a1, a2, . . . be a sequence of complex numbers.
We say that a1, a2, . . . converges to a, denoted limn→∞ an = a, if

for every ε > 0 we can find n0 such that

|a− an| < ε for all n ≥ n0.

In words, a1, a2, . . . converges to the complex number a, the sequence
eventually belongs to every disk centred at a, no matter how small the
disk.

Once we know what it means for a sequence to converge, we can
define convergence of a series:

Definition 8.7. We say that the series
∑
an converges to s if the

sequence of partial sum sn =
∑

i≤n ai converges to s.

From here we can define absolute convergence and conditional con-
vergence the same way and we still get (8.5).

Example 8.8. Let s be a complex number, such that Re(s) > 0. The
series

∞∑
n=0

1

ns

converges absolutely for Re(s) > 1.

First of all, we need to interpret ns. For this we use the principal
value of the logarithm. If

z = ns then log z = s log n.

We take the principal value of the logarithm Log n = lnn:

z = es lnn.

Now we check absolute convergence. Suppose that

s = a+ ib.

Note that

ns = es ln

= e(a+ib) lnn

= ea lnneib lnn,
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so that

|ns| = |ea logn|
= na

= nRe(s).

So if we take absolute values then we get the series∑ 1

nRe(s)
.

This converges for Re(s) > 1, as we already saw.
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