
9. Power series

Definition 9.1. Let z0 be a complex number. An infinite sum of the
form ∑

an(z − z0)n

where a1, a2, . . . are complex numbers is called a power series, cen-
tred at z0.

Of course power series are useless (at least in analysis) unless we
have convergence, since we want a function. The weakest type of con-
vergence we can ask for is convergence at a point, called pointwise
convergence: we can just ask for the series∑

an(z1 − z0)n

to converge, where z1 is another complex number. We then let z1 vary
in the domain U . We could ask for a little bit more and ask for absolute
convergence.

We can do one more thing, we can view the partial sum

sn(z) =
∑
k≤n

ak(z − z0)k

as a function of z (in fact, it is just a polynomial of degree at most
n). We can then ask for uniform convergence, instead of pointwise
convergence:

Definition 9.2. Let U ⊂ C be a region containing the point z0.
We say that the power series∑

an(z − z0)n

converges uniformly on U to the function s(z) if for every ε > 0
there an integer n0 such that if n > n0 then

|s(z)− sn(z)| < ε

for all n 6= n0 and for every z ∈ U .

The crucial point is that the same natural number n0 works uniformly
for all z ∈ U . Uniform convergence is to pointwise convergence as
absolute convergence is to conditional convergence; it is far superior.
Accept no other form of convergence.

The main result is the following:

Definition-Theorem 9.3. Let
∑
an(z − z0)n be a power series.

There is a quantity, either a non-negative real number or infinity,
R ∈ [0,∞], called the radius of convergence with the following
properties:
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(1) If z belongs to the open disk, centred around z0, of radius R
then the power series converges absolutely at z.

(2) If z does not belong to the closed disk, centred around z0, of
radius R then the power series diverges.

(3) If R′ < R then the power series converges uniformly on the open
centred around z0, of radius R′.

In words, we have the following. Outside the radius of convergence
we have divergence; inside we have absolute convergence and we even
have uniform convergence, if we stay away from the boundary.

(9.3) makes no statement about what happens on the boundary. In
fact all sorts of behaviour and pathologies are possible here.

It is even possible to identify the radius of convergence:

R =
1

lim supn→∞
n
√
|an|

.

Let us break this formula down a bit. Not surprisingly the radius
of convergence only depends on the magnitude of the coefficients and
what happens in the limit as n goes to infinity. The faster the absolute
value of the coefficients grows the smaller the radius of convergence,
which is why there is a reciprocal.

The limsup is defined as follows. Given a sequence of real num-
bers c1, c2, . . . let d1, d2, . . . be the sequence of supremums (usually the
maximum) of the tails of the sequence c1, c2, . . . . The limsup of the
sequence c1, c2, . . . is the limit of the sequence d1, d2, . . . ; d1, d2, . . . is
a monotonic non-increasing sequence and so this limit always exists. If
the limit of the sequence c1, c2, . . . exists then it is equal to the limsup,
so that most of the time we can ignore the limsup.

Example 9.4. For the sequence

0, 1, 0, 1, . . .

the sequence of supremums is

1, 1, 1, 1, . . . .

The original limit does not exist but the limit of the second sequence
is 1, so the limsup of the first sequence is 1.

Example 9.5. For the sequence

1, −1/2, 1/3, −1/4, . . .

the sequence of supremums is

1, 1/3, 1/3, 1/5, 1/5 . . . .
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Example 9.6. Recall that we defined the exponential via a power se-
ries:

ez = 1 + z +
z2

2
+
z3

3!
+ . . . .

Obviously the centre is the origin.
Here the coefficients are

1

n!
.

No need to take the absolute value and if we take the reciprocal we get

n!.

Half of the numbers in this product as at least n/2 so that
n
√
n! >

√
n/2.

Therefore even after you take nth roots the limit is infinity. So the
radius of convergence is infinity. Inside the radius of convergence, that
is everywhere, we get absolute convergence and away from infinity we
get uniform convergence.

In fact we could have found the radius of convergence just using
(9.3). This says we always get divergence if we are further away than
R. But we know that the exponential power series works everywhere
on the real axis and so the radius of convergence must be infinity.

Once we know that the exponential has a power series expansion with
radius of convergence infinity we get the same result for cosine and sine.
One way is to compute the limsup. Note that half the coefficients of
the sine and cosine are zero. When you compute the limsup we ignore
the zero coefficients. It is clear that the radius of convergence is again
infinity.

Or we could use the following basic results:

Proposition 9.7. Let
∑
an(z − z0)n and

∑
bn(z − z0)n be two power

series, centred around the same point z0. Suppose the radius of con-
vergence of the first series is R1 and the radius of convergence of the
second series is R2. Let α be a complex number.

(1)
∑
an(αz − z0)

n is a power series centred at z0 with radius of
convergence R1/|α|.

(2)
∑

(an + bn)(z − z0)n is a power series centred at z0 with radius
of convergence at least min(R1, R2).

(3)
∑
cn(z − z0)

n is a power series centred at z0 with radius of
convergence at least min(R1, R2), where

cn =
∑
k+l

akbl.
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Note that if you multiply the power series
∑
an(z−z0)n and

∑
bn(z−

z0)
n then the coefficients of the product are c0, c1, c2, . . . .
We have

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
.

It follows that cos z and sin z have power series with the same radius
of convergence as ez, as ±i has modulus one.

The other way to generate power series is to use geometric series.

Theorem 9.8.
a

1− z
= a+ az + az2 + . . .

is a power series with radius of convergence 1.

Proof. We saw in the homework that

1− zn+1

1− z
= 1 + z + z2 + · · ·+ zn.

Suppose that |z| < 1. Then

lim
n→∞

zn+1 = 0.

Thus
1

1− z
= 1 + z + z2 + . . . ,

for |z| < 1. Now multiply by a.
On the other hand, if |z| > 1 then

lim
n→∞

zn+1

does not exist, since the modulus goes to infinity. �

Note that the Möbius transformation

z −→ a

1− z
sends 1 to ∞. Thus there is a natural reason why the radius of con-
vergence is one. The function

C −→ C given by z −→ a

1− z
,

is not defined at z = 1. Note also that the coefficients of the power
series are all 1. The absolute value of 1 is 1, the nth root of 1 is 1, the
reciprocal of 1 is 1 and the limsup of 1 is 1. Thus (9.8) is consistent
with (9.3).

In fact this is no coincidence. To prove (9.3) you simply compare∑
an(z − z0)n with a geometric series.
Note that the complex numbers explain another conundrum.
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Example 9.9. Consider the real function:

1

1 + x2
.

Starting with the formula

1

1− x
= 1 + x+ x2 + . . . ,

we get the power series expansion

1

1 + x2
= 1− x2 + x4 − . . .

by a simple substitution, replace −x by x2. It is clear that this doesn’t
change the radius of convergence.

On the other hand, it is clear that the power series for

1

1− x
should have radius of convergence one, since the denominator is zero
at x = 1. But it is not clear why

1

1 + x2

should have radius of convergence one, since the denominator is not
zero at x = ±1.

If one replaces x by z everything becomes much clearer. We can
extend the power series expansion to the whole unit disk:

1

1 + z2
= 1− z2 + z4 − . . .

The denominator is zero at z = ±i, two points of the unit circle. It is
just that these points are not real.

For an example of a power series with zero radius of convergence,
consider the power series ∑

n!zn

centred at the origin. We already say that the limsup is zero so that
this power series does not converge anywhere, other than 0.

Definition-Theorem 9.10. The series
∞∑
n=1

1

ns

converges absolutely for Re(s) > 1 and converges uniformly for Re(s) >
s0 > 1. The resulting function is called the Riemann zeta function
and is denoted ζ(s).
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On the other hand, if s = 1 we get the harmonic series, which does
not converge. In fact if a0 is any complex number whose real part is
greater than one then ζ(s) has a power series expansion centred at a0
with radius of convergence R = |a0 − 1|.

The truly amazing fact is that one can use the power series expansion
to analytically continue the Riemann zeta function to the whole
complex plane, except s = 1. In terms of real variable this never
works. There is no way to get around the fact that the function is not
defined at s = 1. But in the complex plane, one can simply go around
the point s = 1.

It is important to realise that there is no simple way to describe ζ(s)
for Re(s) ≤ 1. It is certainly not given by

∞∑
n=1

1

ns
,

which diverges.
The Riemann zeta function is probably the most famous function in

mathematics.

Conjecture 9.11 (Riemann hypothesis). Let s be a zero of the Rie-
mann zeta function, so that

ζ(s) = 0.

Then either Im(s) = 0 or Re(s) = 1/2.

The zeroes on the real line are called the trivial zeroes and are well
understood. The other zeroes are not so well understood.

Finally an important definition.

Definition 9.12. Let f : U −→ C be a function defined on a region U .
We say that f is an analytic function if for every point a ∈ U there

is an open disk containing a such that f is given by a power series on
the disk.

Note that one important subtlety about this definition. We allow the
centre of the power series to change as we vary a. In some sense this
is natural, as power series only make sense on disks but most regions
aren’t disks.
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