FIRST MIDTERM MATH 120A, UCSD, WINTER 20

You have 50 minutes.

There are 4 problems, and the total number of points is 50. Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad
Section instructor: \qquad
Section Time: \qquad

Problem	Points	Score
1	15	
2	10	
3	10	
4	15	
5	10	
6	10	
Total	50	

1. (15pts) (i) Give the definition of the principal value of the argument.

If z is a complex number the principal value of the argument, denoted $\operatorname{Arg}(z)$, is the angle the vector (x, y) makes with the x-axis, with values constrained to lie in the range $(-\pi, \pi]$.
(ii) Give the definition of an open disk.

If $a \in \mathbb{C}$ is a complex number and $\epsilon>0$ is a positive real, the open disk centred at a is the set of complex numbers whose distance to a is less than ϵ.
(iii) Give the definition of a Möbius transformation.

Any function

$$
M: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1} \quad \text { of the form } \quad z \longrightarrow \frac{a z+b}{c z+d}
$$

where a, b, c and d are complex numbers, such that $a d-b c \neq 0$.
2. (10pts) (i) State DeMoivre's theorem.

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

where θ is a real number and n is positive integer.
(ii) Find formulas for

$$
\cos 4 \theta \quad \text { and } \quad \sin 4 \theta,
$$

involving only $\cos \theta$ and $\sin \theta$.

We apply DeMoivre's theorem with $n=4$:

$$
\begin{aligned}
\cos 4 \theta+i \sin 4 \theta & =(\cos \theta+i \sin \theta)^{4} \\
& =\cos ^{4} \theta+4 i \cos ^{3} \theta \sin \theta-6 \cos ^{2} \theta \sin ^{2} \theta-4 i \cos \theta \sin ^{3} \theta+\sin ^{4} \theta
\end{aligned}
$$

Equating real and imaginary parts we get

$$
\begin{aligned}
\cos 4 \theta & =\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta \\
\sin 4 \theta & =4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta
\end{aligned}
$$

3. (10pts) Write down a Möbius transformation that takes 0 to 1, 1 to $1+i$ and ∞ to 2 .

Since ∞ goes to 2 the ratio between a and c is 2 . It follows that neither a not c is zero. Dividing through by c, we may assume that $c=1$ and $a=2$, so that we have something of the form

$$
z \longrightarrow \frac{2 z+b}{z+d}
$$

Since 0 goes to 1 the ratio between b and d is 1 so that we we have something of the form

$$
z \longrightarrow \frac{2 z+b}{z+b}
$$

The condition that 1 goes to $1+i$ implies that

$$
\frac{2+b}{1+b}=1+i
$$

Thus

$$
2+b=(1+b)(1+i) \quad \text { and so } \quad i b=2-i-1=1-i
$$

It follows that $b=-1-i$.
The Möbius transformation

$$
z \longrightarrow \frac{2 z-1-i}{z-1-i}
$$

takes 0 to 1,1 to $1+i$ and ∞ to 2 .
4. (15pts) The functions
$\sinh : \mathbb{C} \longrightarrow \mathbb{C} \quad$ and $\quad \cosh : \mathbb{C} \longrightarrow \mathbb{C}$ are defined by

$$
\cosh (z)=\cos (i z) \quad \text { and } \quad \sinh (z)=-i \sin (i z)
$$

(a) Show that

$$
\sin z=\sin x \cosh y+i \cos x \sinh y
$$

(You may use the addition formulae without proof).

The addition formula for sine reads

$$
\sin (z+w)=\cos z \sin w+\sin z \cos w
$$

where z and w are complex numbers.
We have

$$
\begin{aligned}
\sin z & =\sin (x+i y) \\
& =\cos x \sin (i y)+\sin x \cos i y \\
& =\sin x \cosh y+i \cos x \sinh y .
\end{aligned}
$$

(b) Show that

$$
|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y
$$

Note that

$$
\begin{aligned}
\cosh ^{2} x+\sinh ^{2} x & =\cos ^{2}(i x)+\sin ^{2}(i x) \\
& =1
\end{aligned}
$$

It follows that we have

$$
\begin{aligned}
|\sin z|^{2} & =(\sin x \cosh y)^{2}+(\cos x \sinh y)^{2} \\
& =\sin ^{2} x \cosh ^{2} y+\cos 2 x \sinh ^{2} y \\
& =\sin ^{2} x\left(1-\sinh ^{2} y\right)+\cos ^{2} x \sinh ^{2} y \\
& =\sin ^{2} x+\left(\cos ^{2} x+\sin ^{2} x\right) \sinh ^{2} y \\
& =\sin ^{2} x+\sinh ^{2} y .
\end{aligned}
$$

(c) Find all zeroes of the sine function, that is, find all solutions of

$$
\sin z=0
$$

Note that

$$
\sin z=0 \quad \text { if and only if } \quad \sin ^{2} x+\sinh ^{2} y=0
$$

Bur a sum of squares is zero if and only if each term is zero. If

$$
\sin x=0 \quad \text { and } \quad \sinh y=0
$$

then we have x is a multiple of π and $y=0$.
So the zeroes of $\sin z$ are just the integer multiples of π.

Bonus Challenge Problems

5. (10pts) Prove the triangle inequality

$$
|z+w| \leq|z|+|w|,
$$

with equality if and only if either $z=0$ or w is a positive real scalar multiple of z.

Suppose that $z+w=r e^{i \theta}$. We have

$$
\begin{aligned}
|z+w| & =r \\
& =e^{-i \theta}(z+w) \\
& =\operatorname{Re}\left(e^{-i \theta}(z+w)\right) \\
& =\operatorname{Re}\left(e^{-i \theta} z\right)+\operatorname{Re}\left(e^{-i \theta} w\right) \\
& \leq|z|+|w|
\end{aligned}
$$

Note that we get equality if and only if

$$
\operatorname{Re}\left(e^{-i \theta} z\right)=|z| \quad \text { and } \quad \operatorname{Re}\left(e^{-i \theta} w\right)=|w|
$$

This happens only if both

$$
e^{-i \theta} z \quad \text { and } \quad e^{-i \theta} w
$$

are real. But then w and z are real scalar multiples of each other and for equality this multiple has to be non-negative.
6. (10pts) Given three distinct points p, q and r of the extended complex plane (so that p, q and r are either complex numbers or ∞) show that there is a unique Möbius transformation

$$
z \longrightarrow \frac{a z+b}{c z+d}
$$

taking p to $0, q$ to 1 and r to ∞.
We break this problem into pieces by writing the Möbius transformation as a composition. The first step is to send r to ∞ (if it is not already there). The transformation

$$
z \longrightarrow \frac{1}{z-r}
$$

has this property.
Now let us send p to 0 and at the same time fix ∞. Möbius transformations that fix ∞ look like

$$
z \longrightarrow a z+b
$$

The transformation

$$
z \longrightarrow z-p,
$$

fixes ∞ and sends p to 0 . So now p and r are where we want them and we just have to send q to 1 , fixing 0 and ∞. As transformations fixing ∞ look like

$$
z \longrightarrow a z+b
$$

transformations that fix 0 and ∞ look like

$$
z \longrightarrow a z .
$$

If we want q to go to 1 , we let $a=1 / q$ to get

$$
z \longrightarrow z / q .
$$

This establishes existence. Observe that if M_{1} and M_{2} are two Möbius transformations sending p, q and r to 0,1 and ∞ then the composition

$$
M_{2} \circ M_{1}^{-1}
$$

is a Möbius transformation that sends 0,1 and ∞ to 0,1 and ∞.
We already know that to fix 0 and ∞ the transformation must be of the form

$$
z \longrightarrow a z
$$

and to fix 1 means $a=1$. Thus the composition $M_{1} \circ M_{2}^{-1}$ is the identity and so it follows that $M_{1}=M_{2}$.

