FIRST MIDTERM MATH 120A, UCSD, WINTER 20

You have 50 minutes.

There are 4 problems, and the total number of points is 50. Show all your work. *Please make your work as clear and easy to follow as possible.*

Name:
Signature:
Student ID #:
Section instructor:
Section Time:

Problem	Points	Score
1	15	
2	10	
3	10	
4	15	
5	10	
6	10	
Total	50	

1. (15pts) (i) Give the definition of the principal value of the argument.

If z is a complex number the principal value of the argument, denoted $\operatorname{Arg}(z)$, is the angle the vector (x, y) makes with the x-axis, with values constrained to lie in the range $(-\pi, \pi]$.

(ii) Give the definition of an open disk.

If $a \in \mathbb{C}$ is a complex number and $\epsilon > 0$ is a positive real, the open disk centred at a is the set of complex numbers whose distance to a is less than ϵ .

(iii) Give the definition of a Möbius transformation.

Any function

 $M \colon \mathbb{P}^1 \longrightarrow \mathbb{P}^1$ of the form $z \longrightarrow \frac{az+b}{cz+d}$, where a, b, c and d are complex numbers, such that $ad - bc \neq 0$. 2. (10pts) (i) State DeMoivre's theorem.

 $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$, where θ is a real number and n is positive integer.

(ii) Find formulas for $\cos 4\theta$ and $\sin 4\theta$, involving only $\cos \theta$ and $\sin \theta$.

We apply DeMoivre's theorem with n = 4: $\cos 4\theta + i \sin 4\theta = (\cos \theta + i \sin \theta)^4$ $= \cos^4 \theta + 4i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta + \sin^4 \theta.$

Equating real and imaginary parts we get

 $\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$ $\sin 4\theta = 4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta.$

3. (10pts) Write down a Möbius transformation that takes 0 to 1, 1 to 1 + i and ∞ to 2.

Since ∞ goes to 2 the ratio between a and c is 2. It follows that neither a not c is zero. Dividing through by c, we may assume that c = 1 and a = 2, so that we have something of the form

$$z \longrightarrow \frac{2z+b}{z+d}$$

Since 0 goes to 1 the ratio between b and d is 1 so that we we have something of the form

$$z \longrightarrow \frac{2z+b}{z+b}$$

The condition that 1 goes to 1 + i implies that

$$\frac{2+b}{1+b} = 1+i.$$

Thus

$$2 + b = (1 + b)(1 + i)$$
 and so $ib = 2 - i - 1 = 1 - i$

It follows that b = -1 - i.

The Möbius transformation

$$z \longrightarrow \frac{2z - 1 - i}{z - 1 - i}$$

takes 0 to 1, 1 to 1 + i and ∞ to 2.

4. (15pts) The functions

 $\begin{aligned} \sinh\colon \mathbb{C} &\longrightarrow \mathbb{C} \quad \text{and} \quad \cosh\colon \mathbb{C} &\longrightarrow \mathbb{C} \\ are \ defined \ by \\ \cosh(z) &= \cos(iz) \quad \text{and} \quad \sinh(z) &= -i\sin(iz). \end{aligned}$ (a) Show that $\begin{aligned} \sin z &= \sin x \cosh y + i \cos x \sinh y \\ (You \ may \ use \ the \ addition \ formulae \ without \ proof). \end{aligned}$

The addition formula for sine reads

 $\sin(z+w) = \cos z \sin w + \sin z \cos w,$

where z and w are complex numbers. We have

$$\sin z = \sin(x + iy)$$

= $\cos x \sin(iy) + \sin x \cos iy$
= $\sin x \cosh y + i \cos x \sinh y$.

(b) Show that

$$|\sin z|^2 = \sin^2 x + \sinh^2 y$$

Note that

$$\cosh^2 x + \sinh^2 x = \cos^2(ix) + \sin^2(ix)$$
$$= 1.$$

It follows that we have

$$|\sin z|^2 = (\sin x \cosh y)^2 + (\cos x \sinh y)^2$$
$$= \sin^2 x \cosh^2 y + \cos 2x \sinh^2 y$$
$$= \sin^2 x (1 - \sinh^2 y) + \cos^2 x \sinh^2 y$$
$$= \sin^2 x + (\cos^2 x + \sin^2 x) \sinh^2 y$$
$$= \sin^2 x + \sinh^2 y.$$

(c) Find all zeroes of the sine function, that is, find all solutions of $\sin z = 0$.

Note that

 $\sin z = 0 \quad \text{if and only if} \quad \sin^2 x + \sinh^2 y = 0.$ Bur a sum of squares is zero if and only if each term is zero. If $\sin x = 0 \quad \text{and} \quad \sinh y = 0,$

then we have x is a multiple of π and y = 0. So the zeroes of sin z are just the integer multiples of π .

Bonus Challenge Problems

5. (10pts) Prove the triangle inequality

 $|z+w| \le |z| + |w|,$

with equality if and only if either z = 0 or w is a positive real scalar multiple of z.

Suppose that $z + w = re^{i\theta}$. We have

|z|

$$+ w| = r$$

= $e^{-i\theta}(z + w)$
= $\operatorname{Re}(e^{-i\theta}(z + w))$
= $\operatorname{Re}(e^{-i\theta}z) + \operatorname{Re}(e^{-i\theta}w)$
 $\leq |z| + |w|.$

Note that we get equality if and only if

$$\operatorname{Re}(e^{-i\theta}z) = |z|$$
 and $\operatorname{Re}(e^{-i\theta}w) = |w|.$

This happens only if both

$$e^{-i\theta}z$$
 and $e^{-i\theta}w$

are real. But then w and z are real scalar multiples of each other and for equality this multiple has to be non-negative.

6. (10pts) Given three distinct points p, q and r of the extended complex plane (so that p, q and r are either complex numbers or ∞) show that there is a unique Möbius transformation

$$z \longrightarrow \frac{az+b}{cz+d}$$

taking p to 0, q to 1 and r to ∞ .

We break this problem into pieces by writing the Möbius transformation as a composition. The first step is to send r to ∞ (if it is not already there). The transformation

$$z \longrightarrow \frac{1}{z-r}$$

has this property.

Now let us send p to 0 and at the same time fix ∞ . Möbius transformations that fix ∞ look like

$$z \longrightarrow az + b.$$

The transformation

$$z \longrightarrow z - p_{z}$$

fixes ∞ and sends p to 0. So now p and r are where we want them and we just have to send q to 1, fixing 0 and ∞ . As transformations fixing ∞ look like

$$z \longrightarrow az + b$$

transformations that fix 0 and ∞ look like

$$z \longrightarrow az.$$

If we want q to go to 1, we let a = 1/q to get

$$z \longrightarrow z/q$$

This establishes existence. Observe that if M_1 and M_2 are two Möbius transformations sending p, q and r to 0, 1 and ∞ then the composition

$$M_2 \circ M_1^{-1}$$

is a Möbius transformation that sends 0, 1 and ∞ to 0, 1 and ∞ . We already know that to fix 0 and ∞ the transformation must be of the form

$$z \longrightarrow az$$

and to fix 1 means a = 1. Thus the composition $M_1 \circ M_2^{-1}$ is the identity and so it follows that $M_1 = M_2$.