FIRST MIDTERM
MATH 120A, UCSD, WINTER 20

You have 50 minutes.
There are 4 problems, and the total number of points is 50. Show all your work. Please make your work as clear and easy to follow as possible.

Name: __________________________
Signature: ________________________
Student ID #: ____________________
Section instructor: ________________
Section Time: ____________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
1. (15pts) (i) *Give the definition of the principal value of the argument.*

If \(z \) is a complex number the principal value of the argument, denoted \(\text{Arg}(z) \), is the angle the vector \((x, y)\) makes with the \(x\)-axis, with values constrained to lie in the range \((-\pi, \pi]\).

(ii) *Give the definition of an open disk.*

If \(a \in \mathbb{C} \) is a complex number and \(\epsilon > 0 \) is a positive real, the open disk centred at \(a \) is the set of complex numbers whose distance to \(a \) is less than \(\epsilon \).

(iii) *Give the definition of a Möbius transformation.*

Any function

\[
M : \mathbb{P}^1 \rightarrow \mathbb{P}^1 \quad \text{of the form} \quad z \rightarrow \frac{az + b}{cz + d},
\]

where \(a, b, c \) and \(d \) are complex numbers, such that \(ad - bc \neq 0 \).
2. (10pts) (i) State DeMoivre’s theorem.

\[(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta,\]
where \(\theta\) is a real number and \(n\) is positive integer.

(ii) Find formulas for \(\cos 4\theta\) and \(\sin 4\theta\), involving only \(\cos \theta\) and \(\sin \theta\).

We apply DeMoivre’s theorem with \(n = 4\):
\[
\cos 4\theta + i \sin 4\theta = (\cos \theta + i \sin \theta)^4
= \cos^4 \theta + 4i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta + \sin^4 \theta.
\]

Equating real and imaginary parts we get
\[
\cos 4\theta = \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta
\]
\[
\sin 4\theta = 4 \cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta.
\]
3. (10pts) Write down a Möbius transformation that takes 0 to 1, 1 to $1+i$ and ∞ to 2.

Since ∞ goes to 2 the ratio between a and c is 2. It follows that neither a nor c is zero. Dividing through by c, we may assume that $c = 1$ and $a = 2$, so that we have something of the form

$$z \longrightarrow \frac{2z + b}{z + d}$$

Since 0 goes to 1 the ratio between b and d is 1 so that we have something of the form

$$z \longrightarrow \frac{2z + b}{z + b}$$

The condition that 1 goes to $1+i$ implies that

$$\frac{2 + b}{1 + b} = 1 + i.$$

Thus

$$2 + b = (1 + b)(1 + i) \quad \text{and so} \quad ib = 2 - i - 1 = 1 - i$$

It follows that $b = -1 - i$.

The Möbius transformation

$$z \longrightarrow \frac{2z - 1 - i}{z - 1 - i}$$

takes 0 to 1, 1 to $1+i$ and ∞ to 2.
4. (15pts) The functions
\[\sinh : \mathbb{C} \rightarrow \mathbb{C} \quad \text{and} \quad \cosh : \mathbb{C} \rightarrow \mathbb{C} \]
are defined by
\[\cosh(z) = \cos(iz) \quad \text{and} \quad \sinh(z) = -i \sin(iz). \]
(a) Show that
\[\sin z = \sin x \cosh y + i \cos x \sinh y \]
(You may use the addition formulae without proof).

The addition formula for sine reads
\[\sin(z + w) = \cos z \sin w + \sin z \cos w, \]
where \(z \) and \(w \) are complex numbers.
We have
\[
\begin{align*}
\sin z &= \sin(x + iy) \\
&= \cos x \sin(iy) + \sin x \cos iy \\
&= \sin x \cosh y + i \cos x \sinh y.
\end{align*}
\]
(b) Show that
\[|\sin z|^2 = \sin^2 x + \sinh^2 y \]

Note that
\[\cosh^2 x + \sinh^2 x = \cos^2(ix) + \sin^2(ix) \]
\[= 1. \]

It follows that we have
\[|\sin z|^2 = (\sin x \cosh y)^2 + (\cos x \sinh y)^2 \]
\[= \sin^2 x \cosh^2 y + \cos 2x \sinh^2 y \]
\[= \sin^2 x (1 - \sinh^2 y) + \cos^2 x \sinh^2 y \]
\[= \sin^2 x + (\cos^2 x + \sin^2 x) \sinh^2 y \]
\[= \sin^2 x + \sinh^2 y. \]

(c) Find all zeroes of the sine function, that is, find all solutions of \(\sin z = 0 \).

Note that
\[\sin z = 0 \quad \text{if and only if} \quad \sin^2 x + \sinh^2 y = 0. \]

But a sum of squares is zero if and only if each term is zero. If
\[\sin x = 0 \quad \text{and} \quad \sinh y = 0, \]
then we have \(x \) is a multiple of \(\pi \) and \(y = 0 \).
So the zeroes of \(\sin z \) are just the integer multiples of \(\pi \).
Bonus Challenge Problems

5. (10pts) Prove the triangle inequality

\[|z + w| \leq |z| + |w|, \]

with equality if and only if either \(z = 0 \) or \(w \) is a positive real scalar multiple of \(z \).

Suppose that \(z + w = re^{i\theta} \). We have

\[
|z + w| = r \\
= e^{-i\theta} (z + w) \\
= \text{Re}(e^{-i\theta} (z + w)) \\
= \text{Re}(e^{-i\theta} z) + \text{Re}(e^{-i\theta} w) \\
\leq |z| + |w|.
\]

Note that we get equality if and only if

\[\text{Re}(e^{-i\theta} z) = |z| \quad \text{and} \quad \text{Re}(e^{-i\theta} w) = |w|. \]

This happens only if both

\[e^{-i\theta} z \quad \text{and} \quad e^{-i\theta} w \]

are real. But then \(w \) and \(z \) are real scalar multiples of each other and for equality this multiple has to be non-negative.
6. (10pts) Given three distinct points \(p, q \) and \(r \) of the extended complex plane (so that \(p, q \) and \(r \) are either complex numbers or \(\infty \)) show that there is a unique Möbius transformation

\[
 z \rightarrow \frac{az + b}{cz + d}
\]

taking \(p \) to 0, \(q \) to 1 and \(r \) to \(\infty \).

We break this problem into pieces by writing the Möbius transformation as a composition. The first step is to send \(r \) to \(\infty \) (if it is not already there). The transformation

\[
 z \rightarrow \frac{1}{z - r}
\]

has this property.
Now let us send \(p \) to 0 and at the same time fix \(\infty \). Möbius transformations that fix \(\infty \) look like

\[
 z \rightarrow az + b.
\]

The transformation

\[
 z \rightarrow z - p,
\]

fixes \(\infty \) and sends \(p \) to 0. So now \(p \) and \(r \) are where we want them and we just have to send \(q \) to 1, fixing 0 and \(\infty \). As transformations fixing \(\infty \) look like

\[
 z \rightarrow az + b
\]

transformations that fix 0 and \(\infty \) look like

\[
 z \rightarrow az.
\]

If we want \(q \) to go to 1, we let \(a = 1/q \) to get

\[
 z \rightarrow z/q.
\]

This establishes existence. Observe that if \(M_1 \) and \(M_2 \) are two Möbius transformations sending \(p, q \) and \(r \) to 0, 1 and \(\infty \) then the composition

\[
 M_2 \circ M_1^{-1}
\]

is a Möbius transformation that sends 0, 1 and \(\infty \) to 0, 1 and \(\infty \).
We already know that to fix 0 and \(\infty \) the transformation must be of the form

\[
 z \rightarrow az
\]

and to fix 1 means \(a = 1 \). Thus the composition \(M_1 \circ M_2^{-1} \) is the identity and so it follows that \(M_1 = M_2 \).