# SECOND MIDTERM <br> MATH 120A, UCSD, WINTER 20 

## You have 50 minutes.

There are 5 problems, and the total number of points is 55. Show all your work. Please make your work as clear and easy to follow as possible.

Name: $\qquad$
Signature: $\qquad$
Student ID \#: $\qquad$
Section instructor: $\qquad$
Section Time: $\qquad$

| Problem | Points | Score |
| :---: | :---: | :---: |
| 1 | 15 |  |
| 2 | 10 |  |
| 3 | 10 |  |
| 4 | 10 |  |
| 5 | 10 |  |
| 6 | 10 |  |
| 7 | 10 |  |
| Total | 55 |  |

1. (15pts) (i) Give the definition of the radius of convergence of a power series.

The radius of convergence of a power series centred at $a$ is the smallest real number $R$ such that if $|z-a|>R$ then the series always diverges.
(ii) Give the definition of (complex) differentiable at a point.

We say that a function $f: U \longrightarrow \mathbb{C}$ on a region $U$ is differentiable at $a$ if the limit

$$
\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

exists.
(iii) Write down the Cauchy-Riemann equations.

If $u$ and $v$ are two functions on a region $U$ whose partial derivatives exist then the Cauchy-Riemann equations say

$$
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x} .
$$

2. (10pts) Show that the series

$$
\sum_{n=2}^{\infty} \frac{1}{n \log ^{2} n}
$$

converges.

We compare the series with the integral

$$
\int_{1}^{\infty} \frac{1}{x \ln ^{2} x} \mathrm{~d} x
$$

The sum

$$
\sum_{n=3}^{m} \frac{1}{n \ln ^{2} n}
$$

can be interpreted as a Riemann sum for the integral

$$
\int_{2}^{m} \frac{1}{x \ln x} \mathrm{~d} x
$$

which is less than the integral. We can evaluate the integral by subtitution:

$$
\begin{aligned}
\int_{2}^{m} \frac{1}{x \ln ^{2} x} \mathrm{~d} x & =\int_{\ln 2}^{\ln m} \frac{1}{u^{2}} \mathrm{~d} u \\
& =\left[-\frac{1}{u}\right]_{\ln 2}^{\ln m} \\
& =\frac{1}{\ln 2}-\frac{1}{\ln m}
\end{aligned}
$$

Now the second term goes to zero, as $m$ goes to infinity. Thus the integral converges and so does the sum.
3. (10pts) (i) Write down the first five terms of the power series of

$$
\frac{\cos \left(5 z^{2}-4 z\right)}{1-2 z}
$$

centred at 0 .

We have

$$
\frac{1}{1-2 z}=1+2 z+4 z^{2}+8 z^{3}+16 z^{4}+\ldots
$$

We also have

$$
\cos z=1-\frac{z^{2}}{2}+\frac{z^{4}}{24}+\ldots
$$

so that

$$
\cos (z(5 z-4))=1-\frac{z^{2}(5 z-4)^{2}}{2}+\frac{z^{4}(5 z-4)^{4}}{24}+\ldots
$$

Multiplying out gives

$$
\begin{aligned}
\frac{\cos 5 z^{2}-4 z}{1-2 z} & =\left(1+2 z+4 z^{2}+8 z^{3}+16 z^{4}+\ldots\right)\left(1-\frac{z^{2}(5 z-4)^{2}}{2}+\frac{z^{4}(5 z-4)^{4}}{24}+\ldots\right) \\
& =1+2 z+(4-8) z^{2}+(8-16+20) z^{3}+16 z^{4}-32 z^{4}+40 z^{4}-\frac{25}{2} z^{4}+\frac{4^{4}}{24} z^{4}+\ldots \\
& =1+2 z-4 z^{2}+12 z^{3}+\left(24-\frac{25}{2}+\frac{32}{3}\right) z^{4}+\ldots \\
& =1+2 z-4 z^{2}+32 z^{3}+\left(24-\frac{11}{6}\right) z^{4}+\ldots \\
& =1+2 z-4 z^{2}+32 z^{3}+\frac{133}{6} z^{4}+\ldots
\end{aligned}
$$

(ii) What is the radius of convergence?

The power series for the numerator converges everywhere but the power series for the denominator converges for $|z|<1 / 2$. But the function is not defined at $z=1 / 2$ and so the radius of convergence is $1 / 2$.
4. (10pts) (i) Let

$$
h:[0,1] \longrightarrow \mathbb{C}
$$

be a continuous complex valued function defined on the unit interval $[0,1]$. Define a function

$$
f: U \longrightarrow \mathbb{C} \quad \text { by the rule } \quad f(z)=\int_{0}^{1} \frac{h(t)}{t-z} \mathrm{~d} t
$$

where $U$ is the region $\mathbb{C} \backslash[0,1]$. Show that $f$ is holomorphic on $U$.
We have to compute the following limit (if it exists at all)

$$
\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

As a first step let us manipulate the numerator.

$$
\begin{aligned}
f(z)-f(a) & =\int_{0}^{1} \frac{h(t)}{t-z} \mathrm{~d} t-\int_{0}^{1} \frac{h(t)}{t-a} \mathrm{~d} t \\
& =\int_{0}^{1} \frac{h(t)}{t-z}-\frac{h(t)}{t-a} \mathrm{~d} t \\
& =\int_{0}^{1} \frac{h(t)(t-a)-h(t)(t-z)}{(t-z)(t-a)} \mathrm{d} t \\
& =\int_{0}^{1} \frac{h(t)(z-a)}{(t-z)(t-a)} \mathrm{d} t \\
& =(z-a) \int_{0}^{1} \frac{h(t)}{(t-z)(t-a)} \mathrm{d} t .
\end{aligned}
$$

If we divide through by $z-a$ we get

$$
\int_{0}^{1} \frac{h(t)}{(t-z)(t-a)} \mathrm{d} t
$$

If we take the limit as $z$ approaches $a$ we get

$$
\int_{0}^{1} \frac{h(t)}{(t-a)^{2}} \mathrm{~d} t
$$

Thus the limit exists and $f$ is a holomorphic function.
(ii) What is $f^{\prime}(a)$ ?

$$
\int_{0}^{1} \frac{h(t)}{(t-a)^{2}} \mathrm{~d} t
$$

5. (10pts) Show that if $U$ is a bounded region with smooth boundary then the area of $U$ is given by the integral

$$
\frac{1}{2 i} \int_{\partial U} \bar{z} \mathrm{~d} z
$$

We want to apply Green's theorem to compute the line integral. If $\gamma=\partial U$ then the integrand of the line integral is

$$
\begin{aligned}
\bar{z} \mathrm{~d} z & =(x-i y)(\mathrm{d} x+i \mathrm{~d} y) \\
& =x \mathrm{~d} x+y \mathrm{~d} y+i(-y \mathrm{~d} x+x \mathrm{~d} y) \\
& =(x-i y) \mathrm{d} x+(y+i x) \mathrm{d} y \\
& =P \mathrm{~d} x+Q \mathrm{~d} y .
\end{aligned}
$$

Note that

$$
\frac{\partial P}{\partial y}=-i \quad \text { and } \quad \frac{\partial Q}{\partial x}=i
$$

Green's theorem says

$$
\begin{aligned}
\int_{\gamma} \bar{z} \mathrm{~d} z & =\int_{\partial U} P \mathrm{~d} x+Q \mathrm{~d} y \\
& =\iint_{U}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y \\
& =\iint_{U} 2 i \mathrm{~d} x \mathrm{~d} y \\
& =2 i \iint_{U} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

On the other hand

$$
\iint_{U} \mathrm{~d} x \mathrm{~d} y
$$

is the volume under the graph of the constant function 1 , which is the area of $U$.

## Bonus Challenge Problems

6. (10pts) Let $f$ be a holomorphic function on a region $U$. Show that if the modulus of $f$ is constant then $f$ is constant.

As $U$ is connected, we may prove this locally on $U$. Possibly multiplying $f$ by a constant we may assume $f$ is nowhere real. In this case we can compose with the principal value of the logarithm, to get a holomorphic function

$$
g(z)=\log (f(z)) .
$$

If $f(z)=r e^{i \theta}$ then

$$
g(z)=\ln r+i \theta
$$

where $\theta$ is the principal value of the argument. As the modulus of $f$ is constant then $r$ is constant. It follows that the real part of $g$ is constant.
Suppose that $g(z)=u(x, y)+i v(x, y)$. As the real part of $g$ is constant then $u$ is constant and so $u_{x}=u_{y}=0$ on $U$. As $g$ is holomorphic it satisfies the Cauchy-Riemann equations. But then

$$
\begin{aligned}
v_{y} & =u_{x} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
v_{x} & =-u_{y} \\
& =0 .
\end{aligned}
$$

It follows that $v$ is constant. Therefore $g$ is constant. But then $f$ is constant.
7. (10pts) Let $u$ be the real part of a holomorphic function $f$ on a region $U$. Show that if $u$ achieves its maximum then $u$ is constant.

The Cauchy integral formula says that

$$
f(a)=\frac{1}{2 \pi i} \oint_{|z-a|=\rho} \frac{f(z)}{z-a} \mathrm{~d} z
$$

We compute the RHS using the parametrisation

$$
\gamma(\theta)=a+\rho e^{i \theta} \quad \text { where } \quad \theta \in[0,2 \pi] .
$$

We get

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{|z-a|=\rho} \frac{f(z)}{z-a} \mathrm{~d} z & =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(a+\rho e^{i \theta}\right)}{\rho e^{\theta}} i \rho e^{i \theta} \mathrm{~d} \theta \\
& =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(a+\rho e^{i \theta}\right)}{\rho e^{\theta}} i \rho e^{i \theta} \mathrm{~d} \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(a+\rho e^{i \theta}\right) \mathrm{d} \theta
\end{aligned}
$$

Taking the real parts of both sides of the first equality gives

$$
u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+\rho e^{i \theta}\right) \mathrm{d} \theta
$$

Suppose that $a$ is maximum of $u$, so that $u(z) \leq m=u(a)$. Then

$$
\begin{aligned}
m & =u(a) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+\rho e^{i \theta}\right) \mathrm{d} \theta \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} m \mathrm{~d} \theta \\
& =m .
\end{aligned}
$$

It follows that the inequality is in fact an equality. But then

$$
u\left(a+\rho e^{i \theta}\right)=m
$$

all the way around the circle, since the integral computes the average value of $u(z)$ on the circle. Thus $u(z)=m$ for any point on any circle in $U$ centred at $a$. Thus $u(z)=m$ on any disk centred at $a$. It follows that $u(z)=m$ on any disk in $U$ centred at a point $b$ where $u(b)=m$. It is not hard to conclude that $u(z)=m$ for every $z \in U$, so that $u$ is constant.

