
MODEL ANSWERS TO THE ZEROTH HOMEWORK

1. (a) We have |z − 1− i| = 1 if and only if the distance of z from the
point 1 + i is one. Thus the set of points satisfying the equation

|z − 1− i| = 1

represents a circle of radius one centred around the point 1 + i.
(b) Note that we have

1 < |2z − 6| < 2 if and only if 1/2 < |z − 3| < 1.

Thus the set of points satisfying the inequalities

1 < |2z − 6| < 2

represents the region between two circles, one of radius 1/2 the other
of radius 1, both centred at 3. This region is called an annulus.
(c) There is nothing for it but to do some algebra. If z = x+ iy then

|z − 1|2 + |z + 1|2 = (x− 1)2 + y2 + (x+ 1)2 + y2

= 2x2 + 2 + 2y2.

Thus we want the set of points satisfying the inequality

x2 + y2 < 3.

This is the a circle of radius
√

3 centred at the origin. Classically these
are known as the circles of Apollonius.
(d) One can proceed as in part (c).
Here is another way. Suppose we replace the inequality by an equality.

|z − 1|+ |z + 1| = 2.

Then we are looking at the set of points in the plane such that the sum
of the distances from ±1 is 2.
Imagine taking a piece of string of length and fixing its endpoints to
lie at ±1. If we stretch the piece of string so there is no slack with a
pen, then the curve we trace out is an ellipse with foci at pm1 (this is
a piece of classical Greek geometry).
In our case the length of the string is the distance between the foci. In
this csae the string can only trace out the interval [−1, 1] on the real
line.
The region is the empty set.
(e) Let us again start by replacing the inequality with an equality:

|z − 1| = |z|.
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We want the set of points whose distance from the points 0 and 1 is
equal. We want the vertical line through the point 1/2:

x = 1/2.

(f) The set of points satisfying the inequalities

0 < Im z < π

is the horizontal strip between the two horizontal lines, y = 0 and
y = π.
(g) The set of points satisfying the inequalities

−π < Re z < π

is the vertical strip between the two vertical lines, x = −π and x = π.
(h) Let us start by replacing the inequality with an equality:

|Re z| = |z|.

We want the distance to the origin to be the same as the absolute value
of the real part. As

z = Re z + i Im z,

the triangle inequality implies that Im z = 0. Thus we get the real line.
The set of points satisfying the inequality

|Re z| < |z|.

is everything but the real line.
(i) We have

Re(iz + 2) = Re(iz) + 2

= − Im(z) + 2.

This gives

Im(z) < 2,

the region below the horizontal line y = 2.
(j) There is nothing for it but to do some algebra. If z = x+ iy then

|z − i|2 + |z + i|2 = x2 + (y − 1)2 + x2 + (y + 1)2

= 2x2 + 2 + 2y2.

Thus we want the set of points satisfying the inequality

x2 + y2 < 0.

We have the empty set.
2. Put z = x+ iy and w = s+ it.
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(a) We have

z + w = (x+ s) + i(y + t)

= (x+ s)− i(y + t)

= (x− iy) + (s− it)
= z̄ + w̄.

(b) We have

zw = xs− yt+ i(xt+ ys)

= xs− yt− i(xt+ ys).

By contrast

z̄w̄ = (x− iy)(s− it)
= xs− yt− i(xt+ ys).

(c) We have

|z̄| = |x− iy|

=
√
x2 + y2

= |z|.
(d) We have

zz̄ = (x+ iy)(x− i)
= x2 + y2

= |z|2.
3. Let us translate so that z0 is the origin. Now rotate so that z1 has
no imaginary part. If we square both sides then we get

|z|2 = ρ2|z − z1|2.
Let z = x+ iy and z1 = a, a real number, We get

x2 + y2 = ρ2(x− a)2 + ρ2y2.

Rearranging gives

(1− ρ2)x2 + (1− ρ2)y2 + 2ρ2ax− ρ2a2 = 0.

Dividing through by 1− ρ2 gives

x2 + 2σax+ σa2 + y2 = 0 where σ =
ρ2

1− ρ2
.

Completing the square gives

(x− σ)2 + y2 = σ(1− σ)a2.
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This represents a circle.
If ρ = 1 we get the bisector of the two points z0 and z1.

Challenge Problems: (Just for fun)

4. (i) as the sum of continuous function is continuous and the product
of continuous functions is continuous, it suffices to show that

xme−1/x
2

is continuous at the origin, where m is an integer. Replacing x by 1/y
it suffices to show that the limit as y goes to infinity of

yme−y
2

=
ym

ey2

exists (here we flipped the sign of m). This is an easy application of
L’Hôpital’s rule.
(ii) f is certainly differentiable outside the origin. At the origin we go
back to the definition of the derivative:

f ′(0) = lim
h→0

f(h)− f(0)

h

= lim
h→0

p(h)e−1/h
2
/hm

h

= lim
h→0

p(h)e−1/h
2

hm+1

= 0,

by (a). Thus the limit exists and the derivative is zero.
(iii) If we just apply the usual rules of differentiation away from zero
then we get

d

dx

(
p(x)

xm
e−1/x

2

)
=
p′(x)xm −mp(x)xm−1

x2m
e−1/x

2

+
p(x)

xm
−2

x3
e−1/x

2

=

(
p′(x)xm −mp(x)xm−1

x2m
− 2p(x)

xm+3

)
e−1/x

2

=

(
p′(x)xm −mp(x)xm−1 − 2p(x)xm−3

x2m

)
e−1/x

2

=
q(x)

xn
e−1/x

2

,

where

q(x) = p′(x)xm −mp(x)xm−1 − 2p(x)xm−3 and n = 2m.
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(iv) f(x) is infinitely differentiable by induction and the derivatives at
the origin are all zero, by (iii).
(v) Just use the usual formula to compute the coefficients of the MacLau-
rin series.
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