MODEL ANSWERS TO THE FIRST HOMEWORK

1. We saw in the previous homework that a circle of radius ρ and centred at the origin is given by the equation

$$
|z-a|=\rho
$$

Squaring both sides we get

$$
\begin{aligned}
\rho^{2} & =|z-a|^{2} \\
& =(z-a) \overline{(z-a)} \\
& =(z-a)(\bar{z}-\bar{a}) \\
& =z \bar{z}+z \bar{a}-a \bar{z}+a \bar{a} \\
& =|z|^{2}+z \bar{a}-a \bar{z}+|a|^{2} .
\end{aligned}
$$

But

$$
\begin{aligned}
2 \operatorname{Re}(\bar{a} z) & =\bar{a} z+\overline{\bar{a} z} \\
& =\bar{a} z+a \bar{z} .
\end{aligned}
$$

Putting this together gives the result.
2. (a) We have

$$
\begin{aligned}
p(i) & =i^{3}+i^{2}+i+1 \\
& =-i+1+i+1 \\
& =0 .
\end{aligned}
$$

(b) There are any number of ways to proceed. $p(z)$ is a real polynomial and so the complex conjugate of $i,-i$ is another root. We might then guess that -1 is the third root.
Aliter: If the other roots are α and β then we know

$$
z^{3}+z^{2}+z+1=(z-i)(z-\alpha)(z-\beta)
$$

Multiplying out the RHS and equating coefficients gives us

$$
-i \alpha \beta=1 \quad \text { and } \quad-i-\alpha-\beta=1,
$$

so that

$$
\alpha \beta=i \quad \text { and } \quad \alpha+\beta=-1-i .
$$

Thus α and β are the roots of the quadratic polynomial

$$
z^{2}+(1+i) z-i .
$$

Now complete the square or use the quadratic formula.

Aliter: We can do long division and divide the linear factor $z+i$ into the polynomial $p(z)$. We know we won't get a remainder and the quotient is in fact

$$
z^{2}+(1+i) z-i
$$

Aliter: If we multiply $p(z)$ by the polynomial $z-1$ we get the polynomial

$$
z^{4}-1
$$

The roots are the fourth roots of unity. i is a fourth root of unity and 1 is a root of $z-1$. What is left are -1 and $-i$ and these are the other roots.
3. We have

$$
i=i \quad i^{2}=-1 \quad i^{3}=-i \quad \text { and } \quad i^{4}=1
$$

Thus the powers of i are periodic with period 4. i is an nth root of unity if and only if n is divisible by 4 .
4. Let $n \geq 1$ be an integer.
(a) There are three ways to proceed. The easiest is to treat z as a variable. It is clear that

$$
\left(1+z+z^{2}+z^{3}+\cdots+z^{n}\right)(1-z)=1-z^{n+1}
$$

and dividing through by $1-z$ gives the result.
Aliter: We could use induction on n. The result is clear if $n=0$, since the LHS is 1 and the RHS is

$$
\frac{1-z}{1-z}
$$

Assume the result for n and let's see what happens for $n+1$

$$
\begin{aligned}
1+z+z^{2}+z^{3}+\cdots+z^{n}+z^{n+1} & =\left(1+z+z^{2}+z^{3}+\cdots+z^{n}\right)+z^{n+1} \\
& =\frac{1-z^{n+1}}{1-z}+z^{n+1} \\
& =\frac{1-z^{n+1}+(1-z) z^{n+1}}{1-z} \\
& =\frac{1-z^{n+2}}{1-z}
\end{aligned}
$$

This completes the induction and the proof.
Aliter: We could recognize that we have a geometric series with common ratio z and use the trick of Gauss. Call the sum on the LHS.

Multiplying by z gives us:

$$
\begin{aligned}
S & =1+z+z^{2}+z^{3}+\cdots+z^{n} \\
z S & =\quad z+z^{2}+z^{3}+\cdots+z^{n}+z^{n+1}
\end{aligned}
$$

As the expressions on the RHS have so many common terms it makes sense to subtract:

$$
(1-z) S=1-z^{n+1}
$$

Dividing gives the result.
(b) We apply (a) with $z=e^{i \theta}$. We get

$$
1+e^{i \theta}+e^{2 i \theta}+\cdots+e^{n i \theta}=\frac{1-e^{i(n+1) \theta}}{1-e^{i \theta}}
$$

Now we equate the real parts. The real part of the LHS is

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta
$$

For the RHS, we first attack the denominator:

$$
\begin{aligned}
1-e^{i \theta} & =e^{i \theta / 2}\left(e^{-i \theta / 2}-e^{i \theta / 2}\right) \\
& =-2 i e^{i \theta / 2} \sin \theta / 2
\end{aligned}
$$

Note that the reciprocal of $-i e^{i \theta / 2}$ is

$$
i e^{-i \theta / 2}
$$

Thus the RHS is

$$
\frac{1-e^{i(n+1) \theta}}{1-e^{i \theta}}=\frac{i e^{-i \theta / 2}-i e^{i(n+1 / 2) \theta}}{2 \sin \theta / 2}
$$

Taking the real part we get

$$
\frac{\sin \theta / 2+\sin (n+1 / 2) \theta}{2 \sin \theta / 2}=\frac{1}{2}+\frac{\sin \left(n+\frac{1}{2}\right) \theta}{2 \sin \frac{\theta}{2}} .
$$

5. Multiplying top and bottom by $\cos \theta$ we get

$$
\begin{aligned}
\left(\frac{1+i \tan \theta}{1-i \tan \theta}\right)^{n} & =\left(\frac{\cos \theta+i \sin \theta}{\cos \theta-i \sin \theta}\right)^{n} \\
& =\left(\frac{e^{i \theta}}{e^{-i \theta}}\right)^{n} \\
& =\left(e^{2 i \theta}\right)^{n} \\
& =e^{i 2 n \theta} \\
& =\frac{1+i \tan n \theta}{1-i \tan n \theta}
\end{aligned}
$$

To get from the penultimate line to the last line we use the identity established to get from the first line to the third line.
6. We want to solve

$$
z^{6}=-64 .
$$

If we put

$$
z=r e^{i \theta}
$$

then we get the equation:

$$
r^{6} e^{6 i \theta}=-64
$$

Taking the modulus of both sides we get

$$
r=2 .
$$

Cancelling we are reduced to solving:

$$
e^{6 i \theta}=-1=e^{i \pi} .
$$

One solution is

$$
6 \theta=\pi \quad \text { so that } \quad \theta=\frac{\pi}{6} .
$$

But we might go once around the circle so that another solution is

$$
6 \theta=\pi+2 \pi \quad \text { so that } \quad \theta=\frac{\pi}{2}
$$

Continuing in this way gives us all six solutions;

$$
\begin{array}{lll}
6 \theta=5 \pi & \text { so that } & \theta=\frac{5 \pi}{6} \\
6 \theta=7 \pi & \text { so that } & \theta=\frac{7 \pi}{6} \\
6 \theta=9 \pi & \text { so that } & \theta=\frac{3 \pi}{2} \\
6 \theta=11 \pi & \text { so that } & \theta=\frac{11 \pi}{6} .
\end{array}
$$

The sixth roots of -1 are therefore

$$
e^{i \pi / 6} ; \quad e^{i \pi / 2} ; \quad e^{5 i \pi / 6} ; \quad e^{7 i \pi / 6} ; \quad e^{3 i \pi / 2} ; \quad \text { and } \quad e^{11 i \pi / 6} .
$$

The sixth roots of -64 are

$$
2 e^{i \pi / 6} ; \quad 2 e^{i \pi / 2} ; \quad 2 e^{5 i \pi / 6} ; \quad 2 e^{7 i \pi / 6} ; \quad 2 e^{3 i \pi / 2} ; \quad \text { and } \quad 2 e^{11 i \pi / 6} .
$$

There is an interesting connection between this problem and the problem of finding the twelth roots of unity. If

$$
\zeta=e^{i \pi / 6}
$$

then the powers of ζ are 12th roots of unity. The even powers are sixth roots of unity but the odd powers are sixth roots of -1 . Thus we just want the odd powers of ζ :

$$
\zeta ; \quad \zeta^{3} ; \quad \zeta^{5} ; \quad \zeta^{7} ; \quad \zeta^{9} ; \quad \text { and } \quad \zeta^{11} .
$$

7. We first put $1-\sqrt{3} i$ into polar form

$$
1-\sqrt{3} i=2 e^{i 2 \pi / 3}
$$

It follows that

$$
\begin{aligned}
(1-\sqrt{3} i)^{10} & =\left(2 e^{-i 2 \pi / 3}\right)^{10} \\
& =2^{10} e^{-i 20 \pi / 3} \\
& =2^{10} e^{-4 i \pi / 3} \\
& =2^{10} e^{i 2 \pi / 3} \\
& =2^{9}(-1+\sqrt{3} i) .
\end{aligned}
$$

Challenge Problems: (Just for fun)
8. Suppose that $z+w=r e^{i \theta}$. We have

$$
\begin{aligned}
|z+w| & =r \\
& =e^{-i \theta}(z+w) \\
& =\operatorname{Re}\left(e^{-i \theta}(z+w)\right) \\
& =\operatorname{Re}\left(e^{-i \theta} z\right)+\operatorname{Re}\left(e^{-i \theta} w\right) \\
& \leq|z|+|w|
\end{aligned}
$$

Note that we get equality if and only if

$$
\operatorname{Re}\left(e^{-i \theta} z\right)=|z| \quad \text { and } \quad \operatorname{Re}\left(e^{-i \theta} w\right)=|w| .
$$

This happens only if both

$$
e^{-i \theta} z \quad \text { and } \quad e^{-i \theta} w
$$

are real. But then w and z are real scalar multiples of each other and for equality this multiple has to be non-negative.

