
MODEL ANSWERS TO THE FIRST HOMEWORK

1. We saw in the previous homework that a circle of radius ρ and
centred at the origin is given by the equation

|z − a| = ρ.

Squaring both sides we get

ρ2 = |z − a|2

= (z − a)(z − a)

= (z − a)(z̄ − ā)

= zz̄ + zā− az̄ + aā

= |z|2 + zā− az̄ + |a|2.
But

2 Re(āz) = āz + āz

= āz + az̄.

Putting this together gives the result.
2. (a) We have

p(i) = i3 + i2 + i+ 1

= −i+ 1 + i+ 1

= 0.

(b) There are any number of ways to proceed. p(z) is a real polynomial
and so the complex conjugate of i, −i is another root. We might then
guess that −1 is the third root.
Aliter: If the other roots are α and β then we know

z3 + z2 + z + 1 = (z − i)(z − α)(z − β).

Multiplying out the RHS and equating coefficients gives us

−iαβ = 1 and − i− α− β = 1,

so that
αβ = i and α + β = −1− i.

Thus α and β are the roots of the quadratic polynomial

z2 + (1 + i)z − i.
Now complete the square or use the quadratic formula.
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Aliter: We can do long division and divide the linear factor z + i
into the polynomial p(z). We know we won’t get a remainder and the
quotient is in fact

z2 + (1 + i)z − i.

Aliter: If we multiply p(z) by the polynomial z − 1 we get the poly-
nomial

z4 − 1.

The roots are the fourth roots of unity. i is a fourth root of unity and
1 is a root of z− 1. What is left are −1 and −i and these are the other
roots.
3. We have

i = i i2 = −1 i3 = −i and i4 = 1.

Thus the powers of i are periodic with period 4. i is an nth root of
unity if and only if n is divisible by 4.
4. Let n ≥ 1 be an integer.
(a) There are three ways to proceed. The easiest is to treat z as a
variable. It is clear that

(1 + z + z2 + z3 + · · ·+ zn)(1− z) = 1− zn+1

and dividing through by 1− z gives the result.
Aliter: We could use induction on n. The result is clear if n = 0, since
the LHS is 1 and the RHS is

1− z
1− z

.

Assume the result for n and let’s see what happens for n+ 1

1 + z + z2 + z3 + · · ·+ zn + zn+1 = (1 + z + z2 + z3 + · · ·+ zn) + zn+1

=
1− zn+1

1− z
+ zn+1

=
1− zn+1 + (1− z)zn+1

1− z

=
1− zn+2

1− z
.

This completes the induction and the proof.
Aliter: We could recognize that we have a geometric series with com-
mon ratio z and use the trick of Gauss. Call the sum on the LHS.
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Multiplying by z gives us:

S = 1 + z + z2 + z3 + · · ·+ zn

zS = z + z2 + z3 + · · ·+ zn + zn+1

As the expressions on the RHS have so many common terms it makes
sense to subtract:

(1− z)S = 1− zn+1.

Dividing gives the result.
(b) We apply (a) with z = eiθ. We get

1 + eiθ + e2iθ + · · ·+ eniθ =
1− ei(n+1)θ

1− eiθ
.

Now we equate the real parts. The real part of the LHS is

1 + cos θ + cos 2θ + · · ·+ cosnθ.

For the RHS, we first attack the denominator:

1− eiθ = eiθ/2(e−iθ/2 − eiθ/2)
= −2ieiθ/2 sin θ/2.

Note that the reciprocal of −ieiθ/2 is

ie−iθ/2.

Thus the RHS is

1− ei(n+1)θ

1− eiθ
=
ie−iθ/2 − iei(n+1/2)θ

2 sin θ/2
.

Taking the real part we get

sin θ/2 + sin(n+ 1/2)θ

2 sin θ/2
=

1

2
+

sin(n+ 1
2
)θ

2 sin θ
2

.

5. Multiplying top and bottom by cos θ we get(
1 + i tan θ

1− i tan θ

)n

=

(
cos θ + i sin θ

cos θ − i sin θ

)n

=

(
eiθ

e−iθ

)n

=
(
e2iθ

)n
= ei2nθ

=
1 + i tannθ

1− i tannθ
.
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To get from the penultimate line to the last line we use the identity
established to get from the first line to the third line.
6. We want to solve

z6 = −64.

If we put

z = reiθ

then we get the equation:

r6e6iθ = −64.

Taking the modulus of both sides we get

r = 2.

Cancelling we are reduced to solving:

e6iθ = −1 = eiπ.

One solution is

6θ = π so that θ =
π

6
.

But we might go once around the circle so that another solution is

6θ = π + 2π so that θ =
π

2
.

Continuing in this way gives us all six solutions;

6θ = 5π so that θ =
5π

6

6θ = 7π so that θ =
7π

6

6θ = 9π so that θ =
3π

2

6θ = 11π so that θ =
11π

6
.

The sixth roots of −1 are therefore

eiπ/6; eiπ/2; e5iπ/6; e7iπ/6; e3iπ/2; and e11iπ/6.

The sixth roots of −64 are

2eiπ/6; 2eiπ/2; 2e5iπ/6; 2e7iπ/6; 2e3iπ/2; and 2e11iπ/6.

There is an interesting connection between this problem and the prob-
lem of finding the twelth roots of unity. If

ζ = eiπ/6
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then the powers of ζ are 12th roots of unity. The even powers are sixth
roots of unity but the odd powers are sixth roots of −1. Thus we just
want the odd powers of ζ:

ζ; ζ3; ζ5; ζ7; ζ9; and ζ11.

7. We first put 1−
√

3i into polar form

1−
√

3i = 2ei2π/3.

It follows that

(1−
√

3i)10 = (2e−i2π/3)10

= 210e−i20π/3

= 210e−4iπ/3

= 210ei2π/3

= 29(−1 +
√

3i).

Challenge Problems: (Just for fun)

8. Suppose that z + w = reiθ. We have

|z + w| = r

= e−iθ(z + w)

= Re(e−iθ(z + w))

= Re(e−iθz) + Re(e−iθw)

≤ |z|+ |w|.
Note that we get equality if and only if

Re(e−iθz) = |z| and Re(e−iθw) = |w|.
This happens only if both

e−iθz and e−iθw

are real. But then w and z are real scalar multiples of each other and
for equality this multiple has to be non-negative.
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