MODEL ANSWERS TO THE FIRST HOMEWORK

1. We saw in the previous homework that a circle of radius ρ and centred at the origin is given by the equation

$$|z - a| = \rho.$$

Squaring both sides we get

$$\rho^2 = |z - a|^2$$

$$= (z - a)(\bar{z} - a)$$

$$= (z - a)(\bar{z} - \bar{a})$$

$$= z\bar{z} + \bar{a} - a\bar{z} + a\bar{a}$$

$$= |z|^2 + z\bar{a} - a\bar{z} + |a|^2.$$

But

$$2 \Re(\bar{a}z) = \bar{a}z + \bar{a}\bar{z}$$

$$= \bar{a}z + a\bar{z}.$$

Putting this together gives the result.

2. (a) We have

$$p(i) = i^3 + i^2 + i + 1$$

$$= -i + 1 + i + 1$$

$$= 0.$$

(b) There are any number of ways to proceed. $p(z)$ is a real polynomial and so the complex conjugate of i, $-i$ is another root. We might then guess that -1 is the third root.

Aliter: If the other roots are α and β then we know

$$z^3 + z^2 + z + 1 = (z - i)(z - \alpha)(z - \beta).$$

Multiplying out the RHS and equating coefficients gives us

$$-i\alpha\beta = 1$$

and

$$-i - \alpha - \beta = 1,$$

so that

$$\alpha\beta = i$$

and

$$\alpha + \beta = -1 - i.$$

Thus α and β are the roots of the quadratic polynomial

$$z^2 + (1 + i)z - i.$$

Now complete the square or use the quadratic formula.
Aliter: We can do long division and divide the linear factor \(z + i \) into the polynomial \(p(z) \). We know we won’t get a remainder and the quotient is in fact
\[
z^2 + (1 + i)z - i.
\]

Aliter: If we multiply \(p(z) \) by the polynomial \(z - 1 \) we get the polynomial
\[
z^4 - 1.
\]
The roots are the fourth roots of unity. \(i \) is a fourth root of unity and \(1 \) is a root of \(z - 1 \). What is left are \(-1 \) and \(-i\) and these are the other roots.

3. We have
\[
i = i \quad i^2 = -1 \quad i^3 = -i \quad \text{and} \quad i^4 = 1.
\]
Thus the powers of \(i \) are periodic with period 4. \(i \) is an \(n \)th root of unity if and only if \(n \) is divisible by 4.

4. Let \(n \geq 1 \) be an integer.
(a) There are three ways to proceed. The easiest is to treat \(z \) as a variable. It is clear that
\[
(1 + z + z^2 + z^3 + \cdots + z^n)(1 - z) = 1 - z^{n+1}
\]
and dividing through by \(1 - z \) gives the result.

Aliter: We could use induction on \(n \). The result is clear if \(n = 0 \), since the LHS is 1 and the RHS is
\[
\frac{1 - z}{1 - z}.
\]
Assume the result for \(n \) and let’s see what happens for \(n + 1 \)
\[
1 + z + z^2 + z^3 + \cdots + z^n + z^{n+1} = (1 + z + z^2 + z^3 + \cdots + z^n) + z^{n+1}
\]
\[
= \frac{1 - z^{n+1}}{1 - z} + z^{n+1}
\]
\[
= \frac{1 - z^{n+1} + (1 - z)z^{n+1}}{1 - z}
\]
\[
= \frac{1 - z^{n+2}}{1 - z}.
\]
This completes the induction and the proof.

Aliter: We could recognize that we have a geometric series with common ratio \(z \) and use the trick of Gauss. Call the sum on the LHS.
Multiplying by z gives us:

\[S = 1 + z + z^2 + z^3 + \cdots + z^n \]

\[zS = z + z^2 + z^3 + \cdots + z^n + z^{n+1} \]

As the expressions on the RHS have so many common terms it makes sense to subtract:

\[(1 - z)S = 1 - z^{n+1}. \]

Dividing gives the result.

(b) We apply (a) with $z = e^{i\theta}$. We get

\[1 + e^{i\theta} + e^{2i\theta} + \cdots + e^{ni\theta} = \frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}}. \]

Now we equate the real parts. The real part of the LHS is

\[1 + \cos \theta + \cos 2\theta + \cdots + \cos n\theta. \]

For the RHS, we first attack the denominator:

\[1 - e^{i\theta} = e^{i\theta/2}(e^{-i\theta/2} - e^{i\theta/2}) = -2ie^{i\theta/2}\sin \theta/2. \]

Note that the reciprocal of $-ie^{i\theta/2}$ is $ie^{-i\theta/2}$.

Thus the RHS is

\[\frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}} = \frac{ie^{-i\theta/2} - ie^{i(n+1/2)\theta}}{2\sin \theta/2}. \]

Taking the real part we get

\[\frac{\sin \theta/2 + \sin(n + 1/2)\theta}{2\sin \theta/2} = \frac{1}{2} + \frac{\sin(n + \frac{1}{2})\theta}{2\sin \frac{\theta}{2}}. \]

5. Multiplying top and bottom by $\cos \theta$ we get

\[\left(\frac{1 + i \tan \theta}{1 - i \tan \theta}\right)^n = \left(\frac{\cos \theta + i \sin \theta}{\cos \theta - i \sin \theta}\right)^n \]

\[= \left(\frac{e^{i\theta}}{e^{-i\theta}}\right)^n \]

\[= (e^{2i\theta})^n \]

\[= e^{i2n\theta} \]

\[= \frac{1 + i \tan n\theta}{1 - i \tan n\theta}. \]
To get from the penultimate line to the last line we use the identity established to get from the first line to the third line.

6. We want to solve
\[z^6 = -64. \]

If we put
\[z = re^{i\theta} \]
then we get the equation:
\[r^6e^{6i\theta} = -64. \]

Taking the modulus of both sides we get
\[r = 2. \]

Cancelling we are reduced to solving:
\[e^{6i\theta} = -1 = e^{i\pi}. \]

One solution is
\[6\theta = \pi \quad \text{so that} \quad \theta = \frac{\pi}{6}. \]

But we might go once around the circle so that another solution is
\[6\theta = \pi + 2\pi \quad \text{so that} \quad \theta = \frac{\pi}{2}. \]

Continuing in this way gives us all six solutions;
\[6\theta = 5\pi \quad \text{so that} \quad \theta = \frac{5\pi}{6}; \]
\[6\theta = 7\pi \quad \text{so that} \quad \theta = \frac{7\pi}{6}; \]
\[6\theta = 9\pi \quad \text{so that} \quad \theta = \frac{3\pi}{2}; \]
\[6\theta = 11\pi \quad \text{so that} \quad \theta = \frac{11\pi}{6}. \]

The sixth roots of -1 are therefore
\[e^{i\pi/6}; \quad e^{i\pi/2}; \quad e^{5i\pi/6}; \quad e^{7i\pi/6}; \quad e^{3i\pi/2}; \quad \text{and} \quad e^{11i\pi/6}. \]

The sixth roots of -64 are
\[2e^{i\pi/6}; \quad 2e^{i\pi/2}; \quad 2e^{5i\pi/6}; \quad 2e^{7i\pi/6}; \quad 2e^{3i\pi/2}; \quad \text{and} \quad 2e^{11i\pi/6}. \]

There is an interesting connection between this problem and the problem of finding the twelfth roots of unity. If
\[\zeta = e^{i\pi/6} \]
then the powers of ζ are 12th roots of unity. The even powers are sixth roots of unity but the odd powers are sixth roots of -1. Thus we just want the odd powers of ζ: $\zeta, \zeta^3, \zeta^5, \zeta^7, \zeta^9,$ and ζ^{11}.

7. We first put $1 - \sqrt{3}i$ into polar form

$$1 - \sqrt{3}i = 2e^{i\pi/3}.$$

It follows that

$$(1 - \sqrt{3}i)^{10} = (2e^{i2\pi/3})^{10}$$
$$= 2^{10}e^{-i20\pi/3}$$
$$= 2^{10}e^{-i4\pi/3}$$
$$= 2^{10}e^{i2\pi/3}$$
$$= 2^9(-1 + \sqrt{3}i).$$

Challenge Problems: (Just for fun)

8. Suppose that $z + w = re^{i\theta}$. We have

$$|z + w| = r$$
$$= e^{-i\theta}(z + w)$$
$$= \text{Re}(e^{-i\theta}(z + w))$$
$$= \text{Re}(e^{-i\theta}z) + \text{Re}(e^{-i\theta}w)$$
$$\leq |z| + |w|.$$

Note that we get equality if and only if

$$\text{Re}(e^{-i\theta}z) = |z|\quad\text{and}\quad\text{Re}(e^{-i\theta}w) = |w|.$$

This happens only if both $e^{-i\theta}z$ and $e^{-i\theta}w$ are real. But then w and z are real scalar multiples of each other and for equality this multiple has to be non-negative.