
MODEL ANSWERS TO THE SECOND HOMEWORK

1. We use DeMoivre’s theorem:

cos 4θ + i sin 4θ = (cos θ + i sin θ)4

= cos4 θ + 4i cos3 θ sin θ − 6 cos2 θ sin2 θ − 4i cos θ sin3 θ + sin4 θ.

Equating real and imaginary part gives

cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

sin 4θ = 4 cos3 θ sin θ − 4 cos θ sin3 θ.

2. (a) The identity

zn − 1 = (z − 1)(zn−1 + zn−2 + · · ·+ z + 1)

follows just by multiplying out. See also homework 1.
(b) Suppose that ζ is an nth root of unity and ζ 6= 1.
We have

0 = ζn − 1

= (ζ − 1)(ζn−1 + ζn−2 + · · ·+ ζ + 1).

As the first factor is non-zero the second factor must be zero.
3. (a) We saw that

eiz = cos z + i sin z.

Thus

eiz = cos z + i sin z

e−iz = cos z − i sin z.

Adding and subtracting gives

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
.

(b) This is clear from (1) and the fact that eiz is periodic with period
2π.
(c) We have

cos(z + w) + i sin(z + w) = ei(z+w)

= eizeiw

= (cos z + i sin z)(cosw + i sinw)

= (cos z cosw − sin z sinw) + i(cos z sinw − sin z cosw).
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Thus

cos(z + w) + i sin(z + w) = (cos z cosw − sin z sinw) + i(cos z sinw − sin z cosw)

cos(z + w)− i sin(z + w) = (cos z cosw − sin z sinw)− i(cos z sinw − sin z cosw).

Adding and subtracting gives the addition formulas:

cos(z + w) = cos z cosw − sin z sinw

sin(z + w) = cos z sinw + sin z cosw.

4. (a) We have

cos z = cos(x+ iy)

= cosx cos(iy)− sinx sin iy

= cosx cosh y − i sinx sinh y.

Similarly

sin z = sin(x+ iy)

= cosx sin(iy) + sin x cos iy

= sinx cosh y + i cosx sinh y.

(b) We have

| cos z|2 = (cosx cosh y)2 + (sinx sinh y)2

= cos2 x cosh2 y + sin2 x sinh2 y

= cos2 x(1− sinh2 y) + sin2 x sinh2 y

= cos2 x+ (cos2 x+ sin2 x) sinh2 y

= cos2 x+ sinh2 y.

Similarly, we have

| sin z|2 = (sinx cosh y)2 + (cosx sinh y)2

= sin2 x cosh2 y + cos 2x sinh2 y

= sin2 x(1− sinh2 y) + cos2 x sinh2 y

= sin2 x+ (cos2 x+ sin2 x) sinh2 y

= sin2 x+ sinh2 y.

(c) Note that

cos z = 0 if and only if cos2 x+ sinh2 y = 0.

If a sum of squares is zero then each term is zero. If

cosx = 0 and sinh y = 0,

then we have x = π/2 plus a multiple of π and y = 0.
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On the other hand

sin z = 0 if and only if sin2 x+ sinh2 y = 0.

If

sinx = 0 and sinh y = 0,

then we have x is a multiple of π and y = 0.
(d) Suppose that ω is a period of sin z. Then

sinω = sin 0

= 0.

As the zeroes of the sine function are all real, it follows that ω is real.
But then ω is a period of sinx. It follows that ω is a multiple of 2π.
Now suppose that ω is a period of cos z. Then

cosπ/2 + ω = cosπ/2

= 0.

As the zeroes of the cosine function are all real, it follows that ω is real.
But then ω is a period of cosx. It follows that ω is a multiple of 2π.
5. (a) If

z = reiθ then z2 = r2e2iθ.

Thus the function z −→ z2 squares the modulus and doubles the argu-
ment.
Note that for the first quadrant we have

{ z ∈ C | Re(z) > 0, Im(z) > 0 } = { z ∈ C | 0 < Arg(z) < π/2 }.
and for the upper half plane

H = { z ∈ C | Im(z) > 0 } = { z ∈ C | 0 < Arg(z) < π }.
Since any positive real has a square root, z −→ z2 establishes a corre-
spondence between the first quadrant and the upper half plane.
(b) Now we want to triple the argument. If

z = reiθ then z3 = r3e3iθ.

Thus the function z −→ z3 cubes the modulus and triples the argu-
ment. As every positive real number is the cube of a real positive
number, the function z −→ z3 establishes a correspondence between
the two regions.
(c) If

z = reiθ then zn = rneniθ.

Thus the function z −→ zn raises the modulus to the nth power and
multiplies the angle by n. As every positive real number is the nth
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power of a real positive number, the function z −→ zn establishes a
correspondence between the two regions.
(d) If

z = reiθ then 1/z = r−1e−iθ.

Thus the function z −→ 1/z takes the reciprocal of the modulus and
flips the sign of the argument. A Point inside the unit circle has mod-
ulus less than one and its reciprocal is a point of modulus greater than
one, a point outside the unit circle. As every non-zero positive real is
the reciprocal of a positive real number and every real is the negative
of another real, z −→ 1/z, maps the region

{ z ∈ C | 0 < |z| < 1 }
that is, the punctured unit disc, to the region

{ z ∈ C | 1 < |z| }
that is, the outside of the unit disc.

Challenge Problems: (Just for fun)

6. As i = ei(2n+1/2)π, for any integer n, we have

ii = (ei(2n+1/2)π)i

= ei
2(2n+1/2)π

= e−(2n+1/2)π.

As usual the ambiguity in the argument percolates to an ambiguity in
taking powers.
Note that ii

i
is ambiguous, in just the same way that ab

c
is ambiguous.

One interpretation is

ii
i

= (e−(2n+1/2+2mi)π)i

= e−(2ni+i/2−2m)π

= e(−i/2+2m)π

= −ie2mπ,
where m is any integer.
Another is

ii
i

= (i)e
−(2n+1/2)π

= (e(2m+1/2)iπ)e
−(2n+1/2)π

= e(2m+1/2)iπe−(2n+1/2)π

,

where m and n are arbitrary integers.
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7. We could try a Möbius transformation. We want to send three
points of the real line to three points of the unit circle.

M(z) =
2iz + 1− i
2z − 1 + i

,

has this property. We make sure the upper half plane goes to the inside
of the unit disk and not the outside. i is a point of the upper half plane.

M(i) =
2ii− 1− i
2i− 1− i

=
−3− i
i− 1

.

The square of the modulus of this number is

12 + 32

12 + 12
= 5 > 1.

Thus we get a point outside the unit circle.
There are two ways to fix this. One way is to post-compose with the
reciprocal function

z −→ 1/z.

This switches the inside of the circle with the outside. This works but
then it takes some work to compute the composition (although, com-
position of Möbius transformations is in fact matrix multiplication).
Another way is to pre-compose. If the upper half plane is sent to the
outside of the unit circle then the lower half plane is sent to the inside.
The map

z −→ −z
switches the upper and lower half planes and so the map

z −→ −2iz + 1− i
−2z − 1 + i

,

is the Möbius transformation we are looking for
8. One can solve this problem directly. Another way is to break this
problem into pieces by writing the Möbius transformation as a compo-
sition of Möbius transformations. The first step is to send r to ∞ (if
it is not already there). The transformation

z −→ 1

z − r
has this property. p and q are mapped to two other points, necessarily
complex numbers.
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Now let us send p to 0 and at the same time fix ∞. Möbius transfor-
mations that fix ∞ look like

z −→ az + b.

The transformation
z −→ z − p,

fixes∞ and sends p to 0. So now p and r are where we want them and
we just have to send q to 1, fixing 0 and ∞. As transformations fixing
∞ look like

z −→ az + b

and so transformations that fix 0 and ∞ look like

z −→ az.

If we want q to go to 1, we let a = 1/q to get

z −→ z/q.

This establishes existence. To prove uniqueness uses a trick. If M1 and
M2 are two Möbius transformations sending p, q and r to 0, 1 and ∞
then the composition

M2 ◦M−1
1

is a Möbius transformation that sends 0, 1 and ∞ to 0, 1 and ∞.
We already know that to fix 0 and ∞ the transformation must be of
the form

z −→ az

and to fix 1 means a = 1. Thus we get the Möbius transformation

z −→ z

which is the identity map. As M1 ◦M−1
2 is the identity it follows that

M1 = M2.
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