MODEL ANSWERS TO THE THIRD HOMEWORK

1. (a) Clear.
(b) Note that the real line, the line $y=0$, contains 0,1 and ∞. The image of the real line must contain $-1,1$ and i. But the line connecting 1 to -1 is the real line and this doesn't contain i.
(c) Suppose that the image of the real line is a line or a circle. Using (b) it must be a circle. Now the unit circle contains ± 1 and i. But there is at most one circle through three points p_{1}, p_{2} and p_{3}. Indeed the centre of the circle must lie on the perpendicular bisector of p_{1} and p_{2} and on p_{2} and p_{3}. As two lines meet in a point, this determines the centre of the circle and then this determines the radius.
(d) We have to check that if z is real then $M(z)$ has modulus one. We have

$$
\begin{aligned}
|M(x)|^{2} & =\left|\frac{2 i x+1-i}{2 x-1+i}\right|^{2} \\
& =\frac{1+(2 x-1)^{2}}{(2 x-1)^{2}+1} \\
& =1
\end{aligned}
$$

2. Since ∞ goes to 2 the ratio between a and c is 2 . It follows that neither a not c is zero. Dividing through by c, we may assume that $c=1$ and $a=2$, so that we have something of the form

$$
z \longrightarrow \frac{2 z+b}{z+d}
$$

Since 0 goes to 1 the ratio between b and d is 1 so that we we have something of the form

$$
z \longrightarrow \frac{2 z+b}{z+b}
$$

The condition that 1 goes to $1+i$ implies that

$$
\frac{2+b}{1+b}=1+i
$$

Thus

$$
2+b=(1+b)(1+i) \quad \text { and so } \quad i b=2-i-1=1-i
$$

It follows that $b=-1-i$.

The Möbius transformation

$$
z \longrightarrow \frac{2 z-1-i}{z-1-i}
$$

takes 0 to 1,1 to $1+i$ and ∞ to 2 .
3. We have

$$
\begin{aligned}
\overline{e^{z}} & =\overline{e^{x+i y}} \\
& =\overline{e^{x} e^{i y}} \\
& =e^{x} e^{\overline{i y}} \\
& =e^{x} e^{-i y} \\
& =e^{x-i y} \\
& =e^{\bar{z}}
\end{aligned}
$$

4. (a) Vertical lines get sent to circles centred at the origin. The line $x=0$ is sent to the unit circle and the line $x=1$ is sent to the circle of radius $e^{1}=e$. Thus the image is the annulus

$$
\{z \in \mathbb{C}|1<|z|<e\}
$$

(b) Horizontal lines $y=\theta$ get sent to half lines through the origin with angle θ. The line $y=\theta$ cuts the circle $|z|=\pi / 2$ at

$$
-\sqrt{\frac{\pi^{2}}{4}-\theta^{2}} \quad \text { and } \quad \sqrt{\frac{\pi^{2}}{4}-\theta^{2}}
$$

Thus the image of the closed disk of radius $\pi / 2$ is sent to the closed set bounded by

$$
r=e^{-\sqrt{\frac{\pi^{2}}{4}-\theta^{2}}} \quad \text { and } \quad r=e^{\sqrt{\frac{\pi^{2}}{4}-\theta^{2}}}
$$

where

$$
-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
$$

This means that the image lies in the half space to the right of the
imaginary axis.

(c) The image of the closed disk of radius π is sent to the closed set bounded by

$$
r=e^{-\sqrt{\pi^{2}-\theta^{2}}} \quad \text { and } \quad r=e^{\sqrt{\pi^{2}-\theta^{2}}}
$$

where

$$
-\pi \leq \theta \leq \pi
$$

Note that the image of the circle just starts to overlap itself at this point. The two points of the circle $\pm \pi$ get sent to the same point -1 . (d) The image of the closed disk of radius $3 \pi / 2$ is sent to the closed set bounded by

$$
r=e^{-\sqrt{9 \pi^{2} / 4-\theta^{2}}} \quad \text { and } \quad r=e^{9 \sqrt{\pi^{2} / 4-\theta^{2}}} .
$$

where

$$
-\pi \leq \theta \leq \pi .
$$

Note that if the angle goes beyond π the circle comes back on itself.
5. (a)

$$
\log (2)=\ln 2
$$

(b)

$$
\begin{aligned}
\log (i) & =\ln 1+i \frac{\pi}{2} \\
& =i \frac{\pi}{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\log (1+i) & =\ln \sqrt{2}+i \frac{\pi}{4} \\
& =\frac{1}{2} \ln 2+i \frac{\pi}{4} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\log (1+i \sqrt{3}) / 2 & =\ln 1+i \frac{\pi}{3} \\
& =i \frac{\pi}{3}
\end{aligned}
$$

Challenge Problems: (Just for fun)
6. (a) It is evident

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is a 2×2 matrix with complex entries and the condition that $a d-b c \neq 0$ is precisely the condition that this matrix is invertible.
(b) Suppose that the matrices A and B are

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
$$

Then the matrix product is

$$
A B=\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right)
$$

Now we compute the composition:

$$
\begin{aligned}
(M \circ N)(z) & =M(N(z)) \\
& =M\left(\frac{e z+f}{g z+h}\right) \\
& =\frac{a \frac{e z+f}{g z+h}+b}{c \frac{e z+f}{g z+h}+d} \\
& =\frac{a(e z+f)+(g z+h) b}{c(e z+f)+(g z+h) d} \\
& =\frac{a e z+a f+b g z+b h}{c e z+c f+d g z+d h} \\
& =\frac{(a e+b g) z+(a f+b h)}{(c e+d g) z+(c f+d h)} .
\end{aligned}
$$

It follows that $M \circ N$ is a Möbius transformation and $A B$ is a matrix corresponding to the product.
(c) The inverse matrix of

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \text { is the matrix } \quad B=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

If N is the Möbius transformation corresponding to B then the composition of M and N is the Möbius transformation whose matrix is the identity matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

that is, the identity function. But then M is invertible and the inverse is the Möbius transformation given by the inverse matrix.

