MODEL ANSWERS TO THE FOURTH HOMEWORK

1. Let s_{1}, s_{2}, \ldots be the partial sums of the alternating harmonic series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}+\ldots
$$

and let t_{1}, t_{2}, \ldots be the partial sums of the series

$$
t=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\ldots
$$

We look at groups of four terms of the first series and compare them with three terms of the second series:

$$
\begin{aligned}
\left(t_{3 n}-t_{3(n-1)}\right) & -\left(s_{4 n}-s_{4(n-1)}\right) \\
& =\left(\frac{1}{4 n-3}+\frac{1}{4 n-1}-\frac{1}{2 n}\right)-\left(\frac{1}{4 n-3}-\frac{1}{4 n-2}+\frac{1}{4 n-1}-\frac{1}{4 n}\right) \\
& =\frac{1}{4 n-2}-\frac{1}{4 n} \\
& =\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n}\right) \\
& =\frac{1}{2}\left(s_{2 n}-s_{2(n-1)}\right) .
\end{aligned}
$$

Summing from 1 to n, we get a lot of cancelling and we get

$$
t_{3 n}-s_{4 n}=\frac{1}{2} s_{2 n} .
$$

Taking the limit as n goes to ∞ we get

$$
\begin{aligned}
t-s & =\lim _{n \rightarrow \infty} t_{3 n}-\lim _{n \rightarrow \infty} s_{4 n} \\
& =\lim _{n \rightarrow \infty}\left(t_{3 n}-s_{4 n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{2} s_{2 n} \\
& =\frac{1}{2} \lim _{n \rightarrow \infty} s_{2 n} \\
& =\frac{1}{2} s
\end{aligned}
$$

so that

$$
t-s=\frac{s}{2} .
$$

Thus

$$
t=\frac{3 s}{2}
$$

2. We compare the first series with the integral

$$
\int_{1}^{\infty} \frac{1}{x \ln x} \mathrm{~d} x
$$

The sum

$$
\sum_{n=2}^{m-1} \frac{1}{n \ln n}
$$

can be interpreted as a Riemann sum for the integral

$$
\int_{2}^{m} \frac{1}{x \ln x} \mathrm{~d} x
$$

which is greater than the integral. We can evaluate the integral by subtitution:

$$
\begin{aligned}
\int_{2}^{m} \frac{1}{x \ln x} \mathrm{~d} x & =\int_{\ln 2}^{\ln m} \frac{1}{u} \mathrm{~d} u \\
& =[\ln u]_{\ln 2}^{\ln m} \\
& =\ln \ln m-\ln \ln 2
\end{aligned}
$$

Note this goes to infinity as m goes to infinity (really, really slowly). As the integral diverges, so does the sum.
We compare the second series with the integral

$$
\int_{1}^{\infty} \frac{1}{x \ln ^{2} x} \mathrm{~d} x
$$

The sum

$$
\sum_{n=3}^{m} \frac{1}{n \ln ^{2} n}
$$

can be interpreted as a Riemann sum for the integral

$$
\int_{2}^{m} \frac{1}{x \ln x} \mathrm{~d} x
$$

which is less than the integral. We can evaluate the integral by subtitution:

$$
\begin{aligned}
\int_{2}^{m} \frac{1}{x \ln ^{2} x} \mathrm{~d} x & =\int_{\ln 2}^{\ln m} \frac{1}{u^{2}} \mathrm{~d} u \\
& =\left[-\frac{1}{u}\right]_{\ln 2}^{\ln m} \\
& =\frac{1}{\ln 2}-\frac{1}{\ln m}
\end{aligned}
$$

Now the second term goes to zero, as m goes to infinity. Thus the integral converges and so does the sum.
3. (a) We start with the standard power series for e^{z} and subtitute z with $2 z$:

$$
e^{2 z}=1+2 z+2 z^{2}+\frac{4 z^{3}}{3}+\frac{2^{4} z^{4}}{4!}+\ldots
$$

The radius of convergence is half of infinity, that is, infinity.
(b) We take linear combinations of the power series

$$
\begin{aligned}
& \cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\ldots, \\
& \sin z=z-\frac{z^{3}}{3!}+\ldots
\end{aligned}
$$

to get

$$
\begin{gathered}
2 \cos z-3 \sin z=2\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\ldots\right)-3\left(z-\frac{z^{3}}{3!}+\dot{)}\right. \\
2-3 z-z^{2}+\frac{z^{3}}{2}+\frac{2 z^{4}}{4!}+\ldots
\end{gathered}
$$

The radius of convergence is ∞.
(c) We start with the power series

$$
\sin z=z-\frac{z^{3}}{3!}+\ldots
$$

and substitute z^{2} for z

$$
\sin z^{2}=z^{2}-\frac{z^{6}}{3!}+\ldots
$$

The radius of convergence is ∞.
(d) We have

$$
\frac{1}{3-2 z}=\frac{1 / 3}{1-2 / 3 z}
$$

We take the power series for the geometric series

$$
\frac{1}{1-z}=1+z+z^{2}+\ldots
$$

substitute $2 z / 3$ for z and then multiply the result by $1 / 3$:

$$
\begin{aligned}
\frac{1}{3-2 z} & =\frac{1 / 3}{1-2 / 3 z} \\
& =\frac{1}{3}+\frac{2 z}{9}+\frac{4 z^{2}}{27}+\ldots
\end{aligned}
$$

The radius of convergence is $3 / 2$.
(e) We take the power series for the geometric series

$$
\frac{1}{1-z}=1+z+z^{2}+\ldots
$$

and substitute z^{2} for z

$$
\frac{1}{1-z^{2}}=1+z^{2}+z^{4}+z^{6}+\ldots
$$

The radius of convergence is 1 .
(f) We could divide by 6 and substitute something of the form $a z+b z^{2}$ for z in the geometric series.
It is easier to simply to use the method of partial fractions

$$
\frac{2 z-5}{6-5 z+z^{2}}=\frac{A}{3-z}+\frac{B}{2-z}
$$

We get

$$
2 z-5=A(2-z)+B(3-z) .
$$

Plugging in $z=3$ we see $B=1$ and so $A=1$.
We get

$$
\begin{aligned}
\frac{2 z-5}{6-5 z+z^{2}} & =\frac{1}{3-z}+\frac{1}{2-z} \\
& =\frac{1 / 3}{1-z / 3}+\frac{1 / 2}{1-z / 2} \\
& =\frac{1}{3}+\frac{z}{9}+\frac{z^{2}}{27}+\cdots+\frac{1}{2}+\frac{z}{4}+\frac{z^{2}}{8}+\ldots \\
& =\frac{5}{6}+\frac{13 z}{36}+\left(\frac{1}{27}+\frac{1}{8}\right) z^{2}+\ldots
\end{aligned}
$$

The radius of convergence is at least 2 , the minimum of 2 and 3 . But the LHS is not defined at $z=2$ and so the radius of convergence is at most 2.
The radius of convergence is 2 .
(g) We have

$$
\begin{aligned}
\frac{1}{1-z} & =\frac{1}{1-i-(z-i)} \\
& =\frac{1 /(1-i)}{1-(z-i) /(1-i)} \\
& =\frac{1}{1-i}+\frac{z-i}{(1-i)^{2}}+\frac{(z-i)^{2}}{(1-i)^{3}}+\ldots
\end{aligned}
$$

The radius of convergence is the radius of convergence of the geometric series

$$
\frac{1}{1-z}=1+z+z^{2}+\ldots
$$

divided by the reciprocal of the modulus of $1-i$, that is, multiplied by the modulus of $1-i$. The modulus of $1-i$ is $\sqrt{2}$ and so the radius of convergence is $\sqrt{2}$.
Indeed the centre of convergence is i and the function

$$
\frac{1}{1-z}
$$

is not defined at $z=1$, whose distance to i is $\sqrt{2}$.
Challenge Problems: (Just for fun)
4. The gradient of $x y=a$ at the point $\left(x_{0}, y_{0}\right)$ is orthogonal to the tangent line at the point $\left(x_{0}, y_{0}\right)$ and the gradient of $x^{2}-y^{2}=b$ at the point $\left(x_{1}, y_{1}\right)$ is orthogonal to the the tangent line at the point $\left(x_{1}, y_{1}\right)$. So we just have to show that the gradients at the same point are orthogonal. The gradient of $x y=a$ at the point (x, y) is (y, x) and the gradient of $x^{2}-y^{2}=b$ at the point (x, y) is $(2 x,-2 y)$. As the dot product

$$
\begin{aligned}
(y, x) \cdot(2 x,-2 y) & =2 x y-2 x y \\
& =0,
\end{aligned}
$$

the two curves are orthogonal.
5. We have

$$
\begin{aligned}
s_{2(n+1)} & =s_{2 n}+\frac{1}{2 n+1}-\frac{1}{2 n+2} \\
& >s_{2 n}
\end{aligned}
$$

and

$$
\begin{aligned}
s_{2(n+1)+1} & =s_{2 n+1}-\frac{1}{2 n+2}+\frac{1}{2 n+3} \\
& <s_{2 n+1} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
s_{2 n+1} & =s_{2 n}-\frac{1}{2 n+1} \\
& >s_{2 n}
\end{aligned}
$$

It follows that

$$
s_{2}<s_{4}<s_{6}<\cdots<s_{5}<s_{3}<s_{1} .
$$

The even terms are bounded from above and increasing so that they tend to a limit s_{e}. The odd terms are bounded from below and decreasing so that they tend to a limit s_{o}. It is clear that $s_{e}<s_{o}$. But the difference between $s_{2 n}$ and $s_{2 n+1}$ is decreasing so that $s_{e}=s_{0}$. This is then the common limit s.

