
MODEL ANSWERS TO THE FOURTH HOMEWORK

1. Let s1, s2, . . . be the partial sums of the alternating harmonic series
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and let t1, t2, . . . be the partial sums of the series
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We look at groups of four terms of the first series and compare them
with three terms of the second series:
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Summing from 1 to n, we get a lot of cancelling and we get

t3n − s4n =
1

2
s2n.

Taking the limit as n goes to ∞ we get
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Thus

t =
3s

2
.

2. We compare the first series with the integral∫ ∞
1

1

x lnx
dx.

The sum
m−1∑
n=2

1

n lnn

can be interpreted as a Riemann sum for the integral∫ m

2

1

x lnx
dx

which is greater than the integral. We can evaluate the integral by
subtitution: ∫ m

2

1

x lnx
dx =

∫ lnm

ln 2

1

u
du

=

[
lnu

]lnm

ln 2

= ln lnm− ln ln 2.

Note this goes to infinity as m goes to infinity (really, really slowly).
As the integral diverges, so does the sum.
We compare the second series with the integral∫ ∞

1
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x ln2 x
dx.

The sum
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which is less than the integral. We can evaluate the integral by subti-
tution: ∫ m

2

1

x ln2 x
dx =

∫ lnm

ln 2

1

u2
du

=

[
−1

u

]lnm

ln 2

=
1

ln 2
− 1

lnm
.

Now the second term goes to zero, as m goes to infinity. Thus the
integral converges and so does the sum.
3. (a) We start with the standard power series for ez and subtitute z
with 2z:

e2z = 1 + 2z + 2z2 +
4z3

3
+

24z4

4!
+ . . .

The radius of convergence is half of infinity, that is, infinity.
(b) We take linear combinations of the power series

cos z = 1− z2

2!
+

z4

4!
+ . . . ,

sin z = z − z3

3!
+ . . . ,

to get

2 cos z − 3 sin z = 2(1− z2

2!
+

z4

4!
+ . . . )− 3(z − z3

3!
+ )̇

2− 3z − z2 +
z3

2
+

2z4

4!
+ . . . .

The radius of convergence is ∞.
(c) We start with the power series

sin z = z − z3

3!
+ . . .

and substitute z2 for z

sin z2 = z2 − z6

3!
+ . . . .

The radius of convergence is ∞.
(d) We have

1

3− 2z
=

1/3

1− 2/3z
.
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We take the power series for the geometric series

1

1− z
= 1 + z + z2 + . . .

substitute 2z/3 for z and then multiply the result by 1/3:

1

3− 2z
=

1/3

1− 2/3z

=
1

3
+

2z

9
+

4z2

27
+ . . . .

The radius of convergence is 3/2.
(e) We take the power series for the geometric series

1

1− z
= 1 + z + z2 + . . .

and substitute z2 for z
1

1− z2
= 1 + z2 + z4 + z6 + . . . .

The radius of convergence is 1.
(f) We could divide by 6 and substitute something of the form az+ bz2

for z in the geometric series.
It is easier to simply to use the method of partial fractions

2z − 5

6− 5z + z2
=

A

3− z
+

B

2− z
.

We get

2z − 5 = A(2− z) + B(3− z).

Plugging in z = 3 we see B = 1 and so A = 1.
We get

2z − 5

6− 5z + z2
=

1
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+

1
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=
1/3
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+
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=
1

3
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z

9
+
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+ · · ·+ 1

2
+

z

4
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=
5

6
+

13z

36
+

(
1
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+

1

8

)
z2 + . . . .

The radius of convergence is at least 2, the minimum of 2 and 3. But
the LHS is not defined at z = 2 and so the radius of convergence is at
most 2.
The radius of convergence is 2.
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(g) We have

1

1− z
=

1

1− i− (z − i)

=
1/(1− i)

1− (z − i)/(1− i)

=
1

1− i
+

z − i

(1− i)2
+

(z − i)2

(1− i)3
+ . . . .

The radius of convergence is the radius of convergence of the geometric
series

1

1− z
= 1 + z + z2 + . . .

divided by the reciprocal of the modulus of 1− i, that is, multiplied by
the modulus of 1− i. The modulus of 1− i is

√
2 and so the radius of

convergence is
√

2.
Indeed the centre of convergence is i and the function

1

1− z

is not defined at z = 1, whose distance to i is
√

2.

Challenge Problems: (Just for fun)

4. The gradient of xy = a at the point (x0, y0) is orthogonal to the
tangent line at the point (x0, y0) and the gradient of x2− y2 = b at the
point (x1, y1) is orthogonal to the the tangent line at the point (x1, y1).
So we just have to show that the gradients at the same point are or-
thogonal. The gradient of xy = a at the point (x, y) is (y, x) and the
gradient of x2 − y2 = b at the point (x, y) is (2x,−2y). As the dot
product

(y, x) · (2x,−2y) = 2xy − 2xy

= 0,

the two curves are orthogonal.
5. We have

s2(n+1) = s2n +
1

2n + 1
− 1

2n + 2
> s2n

and

s2(n+1)+1 = s2n+1 −
1

2n + 2
+

1

2n + 3
< s2n+1.
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On the other hand

s2n+1 = s2n −
1

2n + 1
> s2n.

It follows that

s2 < s4 < s6 < · · · < s5 < s3 < s1.

The even terms are bounded from above and increasing so that they
tend to a limit se. The odd terms are bounded from below and de-
creasing so that they tend to a limit so. It is clear that se < so. But
the difference between s2n and s2n+1 is decreasing so that se = s0.
This is then the common limit s.

6


