MODEL ANSWERS TO THE FIFTH HOMEWORK

1. (a) This is a polynomial and so holomorphic. We apply the chain rule:

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\mathrm{d}}{\mathrm{~d} z}\left(2 z^{2}+1\right)^{5} \\
& =10 z\left(2 z^{2}+1\right)^{4} .
\end{aligned}
$$

(b) This is a rational function, a ratio of two polynomials. It is therefore holomorphic. We apply the quotient rule:

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\mathrm{d}}{\mathrm{~d} z}\left(\frac{z-1}{2 z+1}\right) \\
& =\frac{1(2 z-1)-(z-1) 2}{(2 z+1)^{2}} \\
& =\frac{1}{(2 z+1)^{2}} .
\end{aligned}
$$

(c) This is also a rational function, and so holomorphic. We apply the quotient and chain rule:

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\mathrm{d}}{\mathrm{~d} z}\left(\frac{\left(1+z^{2}\right)^{4}}{z^{2}}\right) \\
& =\frac{8 z\left(1+z^{2}\right)^{3} z^{2}-2 z\left(1+z^{2}\right)^{4}}{z^{4}} \\
& =2\left(1+z^{2}\right)^{3} \frac{4 z^{2}-\left(1+z^{2}\right)}{z^{3}} \\
& =\frac{2\left(3 z^{2}-1\right)\left(1+z^{2}\right)^{3}}{z^{3}} .
\end{aligned}
$$

(d) This is the quotient of two holomorphic functions and so holomorphic. We apply the quotient rule

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\mathrm{d}}{\mathrm{~d} z}\left(\frac{\sin z}{\cos z}\right) \\
& =\frac{\cos z \cos z+\sin z \sin z}{\cos ^{2} z} \\
& =\frac{1}{\cos ^{2} z} \\
& =\sec ^{2} z .
\end{aligned}
$$

(e) $\cosh (z)=\cos (i z)$ and so $f(z)$ is holomorphic, as the composition of holomorphic functions is holomorphic. We apply the chain rule

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\mathrm{d}}{\mathrm{~d} z} \cos (i z) \\
& =-i \sin (i z) \\
& =\sinh (z) .
\end{aligned}
$$

(f) $\sinh (z)=-i \sin (i z)$ and so $f(z)$ is holomorphic, as the composition of holomorphic functions is holomorphic. We apply the chain rule

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\mathrm{d}}{\mathrm{~d} z}(-i \sin (i z)) \\
& =\cos (i z) \\
& =\cosh (z)
\end{aligned}
$$

2. (a) We have to show the limit

$$
\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

does not exist. We have

$$
\begin{aligned}
\frac{f(z)-f(a)}{z-a} & =\frac{\bar{z}-\bar{a}}{z-a} \\
& =\frac{\overline{z-a}}{z-a}
\end{aligned}
$$

If the difference $z-a$ is real then

$$
\overline{z-a}=z-a .
$$

In this case

$$
\begin{aligned}
\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a} & =\lim _{z \rightarrow a} \frac{z-a}{z-a} \\
& =\lim _{z \rightarrow a} 1 \\
& =1
\end{aligned}
$$

On the other hand, if the difference $z-a$ is imaginary then

$$
\overline{z-a}=-(z-a) .
$$

In this case

$$
\begin{aligned}
\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a} & =\lim _{z \rightarrow a}-\frac{z-a}{z-a} \\
& =\lim _{z \rightarrow a}-1 \\
& =-1
\end{aligned}
$$

Thus the limit does not exist as you don't get the same answer if you approach along a different line.
(b) We have $u(x, y)=x$ and $v(x, y)=-y$. We have

$$
\begin{aligned}
u_{x} & =1 \\
& \neq-1 \\
& =v_{y} .
\end{aligned}
$$

Thus $z \longrightarrow \bar{z}$ does not satisfy the Cauchy-Riemann equations and so it is not holomorphic.
3. (a) We have

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

It follows by the chain rule for partial derivatives that

$$
\begin{aligned}
\frac{\partial u}{\partial r} & =\cos \theta \frac{\partial u}{\partial x}+\sin \theta \frac{\partial u}{\partial y} \\
& =\cos \theta \frac{\partial v}{\partial y}-\sin \theta \frac{\partial v}{\partial x} \\
& =\frac{1}{r}\left(-r \sin \theta \frac{\partial v}{\partial x}+r \cos \theta \frac{\partial v}{\partial y}\right) \\
& =\frac{1}{r} \frac{\partial v}{\partial \theta}
\end{aligned}
$$

Simliarly

$$
\begin{aligned}
\frac{\partial u}{\partial \theta} & =-r \sin \theta \frac{\partial u}{\partial x}+r \cos \theta \frac{\partial u}{\partial y} \\
& =-r\left(\sin \theta \frac{\partial u}{\partial x}-\cos \theta \frac{\partial u}{\partial y}\right) \\
& =-r\left(\cos \theta \frac{\partial v}{\partial x}+\sin \theta \frac{\partial v}{\partial y}\right) \\
& =-r \frac{\partial v}{\partial r}
\end{aligned}
$$

(b) We have

$$
\begin{array}{ll}
\frac{\partial u}{\partial r}=m r^{m-1} \cos (m \theta) & \frac{\partial u}{\partial \theta}=-m r^{m} \sin (m \theta) \\
\frac{\partial v}{\partial r}=m r^{m-1} \sin (m \theta) & \frac{\partial v}{\partial \theta}=m r^{m} \cos (m \theta)
\end{array}
$$

It follows that

$$
\begin{aligned}
\frac{\partial u}{\partial r} & =m r^{m-1} \cos (m \theta) \\
& =\frac{1}{r} m r^{m} \cos (m \theta) \\
& =\frac{1}{r} \frac{\partial v}{\partial \theta}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial u}{\partial \theta} & =-m r^{m} \sin (m \theta) \\
& =-r m r^{m-1} \sin (m \theta) \\
& =-r \frac{\partial v}{\partial r}
\end{aligned}
$$

4. Let $w=u+i v$ be the coordinates on the image $f(U)$. Then the area of the image is the volume under the graph of the constant function 1 :

$$
\iint_{f(U)} \mathrm{d} u \mathrm{~d} v .
$$

We have

$$
u+i v=f(x+i y)
$$

If we change variables then we have to multiply through by the Jacobian

$$
\begin{aligned}
\left|\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right| & =u_{x} v_{y}-u_{y} v_{x} \\
& =u_{x} u_{x}+v_{x} v_{x} \\
& =u_{x}^{2}+v_{x}^{2} \\
& =\left|f^{\prime}(z)\right|^{2} .
\end{aligned}
$$

Thus the area of $f(U)$ is

$$
\iint_{f(U)} \mathrm{d} u \mathrm{~d} v=\iint_{U}\left|f^{\prime}(z)\right|^{2} \mathrm{~d} x \mathrm{~d} y
$$

by change of variables.
Challenge Problems: (Just for fun)
5. (a) The solutions of

$$
\sin (\pi z)=0
$$

are the integers, $0, \pm 1, \pm 2, \ldots$.
(b) An infinite product expansion for $\sin (\pi z)$ is given by

$$
\sin \pi z=\alpha z(1-z)(1+z)\left(1-\frac{z}{2}\right)\left(1+\frac{z}{2}\right) \ldots,
$$

where α is a complex number. If we differentiate the LHS we get $\pi \cos \pi z$. If we plug in $z=0$ then we get π. The RHS is a product of αz and what is left, call it v. If we differentiate the RHS, apply Leibniz and plug in $z=0$, the only term that survives is $\alpha v(0) \cdot v(0)=1$ and so the RHS is α. Thus $\alpha=\pi$,

$$
\sin \pi z=\pi z(1-z)(1+z)\left(1-\frac{z}{2}\right)\left(1+\frac{z}{2}\right) \ldots
$$

(c) Grouping positive and negative roots together, we get

$$
\sin (\pi z)=\pi z\left(1-\frac{z^{2}}{1}\right)\left(1-\frac{z^{2}}{4}\right)\left(1-\frac{z^{2}}{9}\right), \ldots
$$

(d) We have

$$
\begin{aligned}
\sin (\pi z) & =\pi z\left(1-\frac{z^{2}}{1}\right)\left(1-\frac{z^{2}}{4}\right)\left(1-\frac{z^{2}}{9}\right), \ldots \\
& =\pi z-\pi a_{3} z^{3}+\pi a_{5} z^{5}+\ldots
\end{aligned}
$$

(e) We have

$$
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots
$$

Replacing z by πz gives

$$
\sin z=\pi z-\frac{\pi^{3} z^{3}}{3!}+\frac{\pi^{5} z^{5}}{5!}-\ldots
$$

The coefficient of z^{3} is

$$
-\frac{\pi^{3}}{6} .
$$

It follows that

$$
\pi a_{3}=\frac{\pi^{3}}{6} .
$$

It remains to compute a_{3}. To get a coefficient of z^{3}, we have to pull z^{2} from one bracket and 1 from every other bracket. In total we get

$$
a_{3}=1+\frac{1}{4}+\frac{1}{9}+\cdots=\zeta(2)
$$

Thus

$$
\pi \zeta(2)=\frac{\pi^{3}}{6}
$$

It follows that

$$
\zeta(2)=\frac{\pi^{2}}{6}
$$

