
MODEL ANSWERS TO THE SIXTH HOMEWORK

1. (a) Suppose that f(z) = u(x, y) + iv(x, y). If the real part of f
is constant then u is constant and so ux = uy = 0 on U . As f is
holomorphic it satisfies the Cauchy-Riemann equations. But then

vy = ux

= 0,

and

vx = −uy
= 0.

It follows that v is constant. But then f is constant.
(b) Let g = if . g is holomorphic as f is holomorphic. As the imaginary
part of f is constant it follows that the real part of g is constant. By
part (a) g is constant. But then f is constant.
2. We have to compute the following limit (if it exists at all)

lim
z→a

f(z)− f(a)

z − a
.

As a first step let us manipulate the numerator.

f(z)− f(a) =

∫ 1

0

h(t)

t− z
dt−

∫ 1

0

h(t)

t− a
dt

=

∫ 1

0

h(t)

t− z
− h(t)

t− a
dt

=

∫ 1

0

h(t)(t− a)− h(t)(t− z)

(t− z)(t− a)
dt

=

∫ 1

0

h(t)(z − a)

(t− z)(t− a)
dt

= (z − a)

∫ 1

0

h(t)

(t− z)(t− a)
dt.

If we divide through by z − a we get∫ 1

0

h(t)

(t− z)(t− a)
dt.
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If we take the limit as z approaches a we get∫ 1

0

h(t)

(t− a)2
dt

(this is a uniform limit as a is at least a fixed distance from the interval
[0, 1]). It follows that the limit exists, so that f is a holomorphic
function and the derivative at a is∫ 1

0

h(t)

(t− a)2
dt.

3. (a) We have

1

z
=

1

x+ iy

=
x− iy
x2 + y2

.

It follows that

u =
x

x2 + y2
and v =

−y
x2 + y2

.

1/z is holomorphic everywhere, except at the origin. Its derivative is
nowhere zero and so it is conformal on U = C \ {0}.
(b) We have

1

z2
=

1

(x+ iy)2

=
(x− iy)2

(x2 + y2)2

=
x2 − y2 − 2ixy

(x2 + y2)2
.

It follows that

u =
x2 − y2

(x2 + y2)2
and v =

−2xy

(x2 + y2)2
.

1/z2 is holomorphic everywhere, except at the origin. Its derivative is
nowhere zero and so it is conformal on U = C \ {0}.
(c) We have

z6 = (x+ iy)6

= x6 + 6ix5y − 15x4y2 − 20ix3y3 + 15x2y4 + 6ixy5 − y6

= x6 − 15x4y2 + 15x2y4 − y6 + i(6x5y − 20x3y3 − 6xy5).
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It follows that

u = x6 − 15x4y2 + 15x2y4 − y6 and v = 6x5y − 20x3y3 − 6xy5.

z6 is holomorphic everywhere. Its derivative is zero at zero and not
zero anywhere else, and so it is conformal on U = C \ {0}.
4. Pick two different values of r, r1 and r2 ∈ (a, b). We just have to show
that the two integrals are equal. We may assume that r1 < r2. Let U
be the region bounded between the two circles, another annulus. Then
the boundary of U is the two circles γr1 and γr2 and so U ∪∂U ⊂ V . It
follows that we may apply Green’s theorem. Note that the boundary
of U consists of two circles

γ1 = −γr1 and γ2 = γr2 .

This minus sign in front of γr1 is meant to indicate that we traverse
the circle γr1 clockwise, the opposite direction to usual. This has the
effect of flipping the sign of the integral.
Green’s theorem says∫

γr2−γr1
P dx+Q dy =

∫
γ2+γ1

P dx+Q dy

=

∫
∂U

P dx+Q dy

=

∫∫
U

(
∂Q

∂x
− ∂P

∂y

)
dxdy

=

∫∫
U

0dxdy

= 0.

It follows that∫
γr2

P dx+Q dy +

∫
−γr1

P dx+Q dy = 0,

so that ∫
γr2

P dx+Q dy =

∫
γr1

P dx+Q dy.

5. In all three cases we use the parametrisation

t −→ z = 2eit.

In this case
z + 2

z
= 1 +

2

z
= 1 + e−it,
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on the boundary. On the other hand

dz = 2ieit dt.

It follows that
z + 2

z
dz = 2i(1 + eit) dt.

(a) We have γ1(t) = 2eit, where t ∈ [0, π]. Thus∫
γ1

z + 2

z
dz =

∫ π

0

2i(1 + eit) dt

=
[
2it+ 2eit

]π
0

= 2πi− 4.

(b) We have γ2(t) = 2eit, where t ∈ [π, 2π]. Thus∫
γ2

z + 2

z
dz =

∫ 2π

π

2i(1 + eit) dt

=
[
2it+ 2eit

]2π
π

= 2πi+ 4.

(c) We have γ3(t) = 2eit, where t ∈ [0, 2π]. As

γ3 = γ1 + γ2,

it follows that ∫
γ3

z + 2

z
dz =

∫
γ1+γ2

z + 2

z
dz

=

∫
γ1

z + 2

z
dz +

∫
γ2

z + 2

z
dz

= 2πi− 4 + 2πi+ 4

= 4πi.

6. We want to apply Green’s theorem to compute the line integral. If
γ = ∂U then the integrand of the line integral is

z̄ dz = (x− iy)(dx+ idy)

= xdx+ ydy + i(−ydx+ xdy)

= (x− iy)dx+ (y + ix)dy

= Pdx+Qdy.

Note that
∂P

∂y
= −i and

∂Q

∂x
= i.
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Green’s theorem says∫
γ

z̄ dz =

∫
∂U

P dx+Q dy

=

∫∫
U

(
∂Q

∂x
− ∂P

∂y

)
dxdy

=

∫∫
U

2idxdy

= 2i

∫∫
U

dxdy.

On the other hand ∫∫
U

dxdy

is the volume under the graph of the constant function 1, which is the
area of U .

Challenge Problems: (Just for fun)

1. (contd) As U is connected, we may prove this locally on U . Possibly
multiplying f by a constant we may assume f is nowhere real. In this
case we can compose with the principal value of the logarithm, to get
a holomorphic function

g(z) = Log(f(z)).

If f(z) = reiθ then

g(z) = ln r + iθ,

where θ is the principal value of the argument.
(c) If the modulus of f is constant then r is constant. It follows that
the real part of g is constant. By part (a) it follows that g is constant.
But then f is constant.
(d) If the argument of f is constant then θ is constant. It follows that
the imaginary part of g is constant. By part (b) it follows that g is
constant. But then f is constant.
7. (a) We are free to apply a translation and so may assume that
a = 0. After that we may rotate until b is a real number. Finally we
can rescale so that b = 1.
So we are looking at the set of points such that

l
√

(x2 + y2) =
√

((x− 1)2 + y2).

Squaring both sides, expanding and rearranging gives

(1− l2)x2 − 2x+ 1 + (1− l2)y2 = 0
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Dividing through by 1− l2, we get

x2 + y2 − 2

x
1− l2 +

1

1− l2
= 0.

Completing the square we get the equation of a circle.
(b) Pick a Möbius transformation that fixes 0 and 1 and sends a point
of the circle C1 to∞. The circle C1 becomes the perpendicular bisector
of 0 and 1, that is, the line x = 1/2. On the other hand, C2 is still a
circle through 0 and 1.
It easy to see that C2 is orthogonal to the line x = 1/2.
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