MODEL ANSWERS TO THE SIXTH HOMEWORK

1. (a) Suppose that $f(z)=u(x, y)+i v(x, y)$. If the real part of f is constant then u is constant and so $u_{x}=u_{y}=0$ on U. As f is holomorphic it satisfies the Cauchy-Riemann equations. But then

$$
\begin{aligned}
v_{y} & =u_{x} \\
& =0,
\end{aligned}
$$

and

$$
\begin{aligned}
v_{x} & =-u_{y} \\
& =0 .
\end{aligned}
$$

It follows that v is constant. But then f is constant.
(b) Let $g=i f . g$ is holomorphic as f is holomorphic. As the imaginary part of f is constant it follows that the real part of g is constant. By part (a) g is constant. But then f is constant.
2. We have to compute the following limit (if it exists at all)

$$
\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

As a first step let us manipulate the numerator.

$$
\begin{aligned}
f(z)-f(a) & =\int_{0}^{1} \frac{h(t)}{t-z} \mathrm{~d} t-\int_{0}^{1} \frac{h(t)}{t-a} \mathrm{~d} t \\
& =\int_{0}^{1} \frac{h(t)}{t-z}-\frac{h(t)}{t-a} \mathrm{~d} t \\
& =\int_{0}^{1} \frac{h(t)(t-a)-h(t)(t-z)}{(t-z)(t-a)} \mathrm{d} t \\
& =\int_{0}^{1} \frac{h(t)(z-a)}{(t-z)(t-a)} \mathrm{d} t \\
& =(z-a) \int_{0}^{1} \frac{h(t)}{(t-z)(t-a)} \mathrm{d} t
\end{aligned}
$$

If we divide through by $z-a$ we get

$$
\int_{0}^{1} \frac{h(t)}{\substack{(t-z)(t-a)}} \mathrm{d} t
$$

If we take the limit as z approaches a we get

$$
\int_{0}^{1} \frac{h(t)}{(t-a)^{2}} \mathrm{~d} t
$$

(this is a uniform limit as a is at least a fixed distance from the interval $[0,1])$. It follows that the limit exists, so that f is a holomorphic function and the derivative at a is

$$
\int_{0}^{1} \frac{h(t)}{(t-a)^{2}} \mathrm{~d} t
$$

3. (a) We have

$$
\begin{aligned}
\frac{1}{z} & =\frac{1}{x+i y} \\
& =\frac{x-i y}{x^{2}+y^{2}}
\end{aligned}
$$

It follows that

$$
u=\frac{x}{x^{2}+y^{2}} \quad \text { and } \quad v=\frac{-y}{x^{2}+y^{2}} .
$$

$1 / z$ is holomorphic everywhere, except at the origin. Its derivative is nowhere zero and so it is conformal on $U=\mathbb{C} \backslash\{0\}$.
(b) We have

$$
\begin{aligned}
\frac{1}{z^{2}} & =\frac{1}{(x+i y)^{2}} \\
& =\frac{(x-i y)^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{2}-y^{2}-2 i x y}{\left(x^{2}+y^{2}\right)^{2}} .
\end{aligned}
$$

It follows that

$$
u=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \quad v=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

$1 / z^{2}$ is holomorphic everywhere, except at the origin. Its derivative is nowhere zero and so it is conformal on $U=\mathbb{C} \backslash\{0\}$.
(c) We have

$$
\begin{aligned}
z^{6} & =(x+i y)^{6} \\
& =x^{6}+6 i x^{5} y-15 x^{4} y^{2}-20 i x^{3} y^{3}+15 x^{2} y^{4}+6 i x y^{5}-y^{6} \\
& =x^{6}-15 x^{4} y^{2}+15 x^{2} y^{4}-y^{6}+i\left(6 x^{5} y-20 x^{3} y^{3}-6 x y^{5}\right) .
\end{aligned}
$$

It follows that
$u=x^{6}-15 x^{4} y^{2}+15 x^{2} y^{4}-y^{6} \quad$ and $\quad v=6 x^{5} y-20 x^{3} y^{3}-6 x y^{5}$. z^{6} is holomorphic everywhere. Its derivative is zero at zero and not zero anywhere else, and so it is conformal on $U=\mathbb{C} \backslash\{0\}$.
4. Pick two different values of r, r_{1} and $r_{2} \in(a, b)$. We just have to show that the two integrals are equal. We may assume that $r_{1}<r_{2}$. Let U be the region bounded between the two circles, another annulus. Then the boundary of U is the two circles $\gamma_{r_{1}}$ and $\gamma_{r_{2}}$ and so $U \cup \partial U \subset V$. It follows that we may apply Green's theorem. Note that the boundary of U consists of two circles

$$
\gamma_{1}=-\gamma_{r_{1}} \quad \text { and } \quad \gamma_{2}=\gamma_{r_{2}}
$$

This minus sign in front of $\gamma_{r_{1}}$ is meant to indicate that we traverse the circle $\gamma_{r_{1}}$ clockwise, the opposite direction to usual. This has the effect of flipping the sign of the integral.
Green's theorem says

$$
\begin{aligned}
& \int_{\gamma_{r_{2}-\gamma_{r_{1}}} P \mathrm{~d} x+Q \mathrm{~d} y}=\int_{\gamma_{2}+\gamma_{1}} P \mathrm{~d} x+Q \mathrm{~d} y \\
&=\int_{\partial U} P \mathrm{~d} x+Q \mathrm{~d} y \\
&=\iint_{U}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y \\
&=\iint_{U} 0 \mathrm{~d} x \mathrm{~d} y \\
&=0 .
\end{aligned}
$$

It follows that

$$
\int_{\gamma_{r_{2}}} P \mathrm{~d} x+Q \mathrm{~d} y+\int_{-\gamma_{r_{1}}} P \mathrm{~d} x+Q \mathrm{~d} y=0
$$

so that

$$
\int_{\gamma_{r_{2}}} P \mathrm{~d} x+Q \mathrm{~d} y=\int_{\gamma_{r_{1}}} P \mathrm{~d} x+Q \mathrm{~d} y
$$

5. In all three cases we use the parametrisation

$$
t \longrightarrow z=2 e^{i t} .
$$

In this case

$$
\begin{aligned}
\frac{z+2}{z} & =1+\frac{2}{z} \\
& =1+e^{-i t}
\end{aligned}
$$

on the boundary. On the other hand

$$
\mathrm{d} z=2 i e^{i t} \mathrm{~d} t
$$

It follows that

$$
\frac{z+2}{z} \mathrm{~d} z=2 i\left(1+e^{i t}\right) \mathrm{d} t
$$

(a) We have $\gamma_{1}(t)=2 e^{i t}$, where $t \in[0, \pi]$. Thus

$$
\begin{aligned}
\int_{\gamma_{1}} \frac{z+2}{z} \mathrm{~d} z & =\int_{0}^{\pi} 2 i\left(1+e^{i t}\right) \mathrm{d} t \\
& =\left[2 i t+2 e^{i t}\right]_{0}^{\pi} \\
& =2 \pi i-4
\end{aligned}
$$

(b) We have $\gamma_{2}(t)=2 e^{i t}$, where $t \in[\pi, 2 \pi]$. Thus

$$
\begin{aligned}
\int_{\gamma_{2}} \frac{z+2}{z} \mathrm{~d} z & =\int_{\pi}^{2 \pi} 2 i\left(1+e^{i t}\right) \mathrm{d} t \\
& =\left[2 i t+2 e^{i t}\right]_{\pi}^{2 \pi} \\
& =2 \pi i+4
\end{aligned}
$$

(c) We have $\gamma_{3}(t)=2 e^{i t}$, where $t \in[0,2 \pi]$. As

$$
\gamma_{3}=\gamma_{1}+\gamma_{2}
$$

it follows that

$$
\begin{aligned}
\int_{\gamma_{3}} \frac{z+2}{z} \mathrm{~d} z & =\int_{\gamma_{1}+\gamma_{2}} \frac{z+2}{z} \mathrm{~d} z \\
& =\int_{\gamma_{1}} \frac{z+2}{z} \mathrm{~d} z+\int_{\gamma_{2}} \frac{z+2}{z} \mathrm{~d} z \\
& =2 \pi i-4+2 \pi i+4 \\
& =4 \pi i
\end{aligned}
$$

6. We want to apply Green's theorem to compute the line integral. If $\gamma=\partial U$ then the integrand of the line integral is

$$
\begin{aligned}
\bar{z} \mathrm{~d} z & =(x-i y)(\mathrm{d} x+i \mathrm{~d} y) \\
& =x \mathrm{~d} x+y \mathrm{~d} y+i(-y \mathrm{~d} x+x \mathrm{~d} y) \\
& =(x-i y) \mathrm{d} x+(y+i x) \mathrm{d} y \\
& =P \mathrm{~d} x+Q \mathrm{~d} y .
\end{aligned}
$$

Note that

$$
\frac{\partial P}{\partial y}=-i \quad \text { and } \quad \frac{\partial Q}{\partial x}=i
$$

Green's theorem says

$$
\begin{aligned}
\int_{\gamma} \bar{z} \mathrm{~d} z & =\int_{\partial U} P \mathrm{~d} x+Q \mathrm{~d} y \\
& =\iint_{U}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y \\
& =\iint_{U} 2 i \mathrm{~d} x \mathrm{~d} y \\
& =2 i \iint_{U} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

On the other hand

$$
\iint_{U} \mathrm{~d} x \mathrm{~d} y
$$

is the volume under the graph of the constant function 1 , which is the area of U.

Challenge Problems: (Just for fun)

1. (contd) As U is connected, we may prove this locally on U. Possibly multiplying f by a constant we may assume f is nowhere real. In this case we can compose with the principal value of the logarithm, to get a holomorphic function

$$
g(z)=\log (f(z))
$$

If $f(z)=r e^{i \theta}$ then

$$
g(z)=\ln r+i \theta
$$

where θ is the principal value of the argument.
(c) If the modulus of f is constant then r is constant. It follows that the real part of g is constant. By part (a) it follows that g is constant. But then f is constant.
(d) If the argument of f is constant then θ is constant. It follows that the imaginary part of g is constant. By part (b) it follows that g is constant. But then f is constant.
7. (a) We are free to apply a translation and so may assume that $a=0$. After that we may rotate until b is a real number. Finally we can rescale so that $b=1$.
So we are looking at the set of points such that

$$
l \sqrt{\left(x^{2}+y^{2}\right)}=\sqrt{\left((x-1)^{2}+y^{2}\right)} .
$$

Squaring both sides, expanding and rearranging gives

$$
\left(1-l^{2}\right) x^{2}-2 x+{ }_{5}^{1}+\left(1-l^{2}\right) y^{2}=0
$$

Dividing through by $1-l^{2}$, we get

$$
x^{2}+y^{2}-\frac{2}{x} 1-l^{2}+\frac{1}{1-l^{2}}=0 .
$$

Completing the square we get the equation of a circle.
(b) Pick a Möbius transformation that fixes 0 and 1 and sends a point of the circle C_{1} to ∞. The circle C_{1} becomes the perpendicular bisector of 0 and 1 , that is, the line $x=1 / 2$. On the other hand, C_{2} is still a circle through 0 and 1 .
It easy to see that C_{2} is orthogonal to the line $x=1 / 2$.

