MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. We have to compute the following limit (if it exists at all)

$$
\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

As a first step let us manipulate the numerator.

$$
\begin{aligned}
f(z)-f(a) & =\int_{\gamma} \frac{h(t)}{t-z} \mathrm{~d} t-\int_{\gamma} \frac{h(t)}{t-a} \mathrm{~d} t \\
& =\int_{\gamma} \frac{h(t)}{t-z}-\frac{h(t)}{t-a} \mathrm{~d} t \\
& =\int_{\gamma} \frac{h(t)(t-a)-h(t)(t-z)}{(t-z)(t-a)} \mathrm{d} t \\
& =\int_{\gamma} \frac{h(t)(z-a)}{(t-z)(t-a)} \mathrm{d} t \\
& =(z-a) \int_{\gamma} \frac{h(t)}{(t-z)(t-a)} \mathrm{d} t .
\end{aligned}
$$

If we divide through by $z-a$ we get

$$
\int_{\gamma} \frac{h(t)}{(t-z)(t-a)} \mathrm{d} t .
$$

If we take the limit as z approaches a we get

$$
\int_{\gamma} \frac{h(t)}{(t-a)^{2}} \mathrm{~d} t
$$

(this is a uniform limit as a is at least a fixed distance from γ). It follows that the limit exists, so that f is a holomorphic function and the derivative at a is

$$
\int_{\gamma} \frac{h(t)}{(t-a)^{2}} \mathrm{~d} t
$$

2. (a) As 1 belongs to the open disk centred at 0 of radius 2 and z^{n} is entire, if we apply Cauchy's integral formula then we get

$$
\begin{aligned}
\oint_{|z|=2} \frac{z^{n}}{z-1} \mathrm{~d} z & =2 \pi i 1^{n} \\
& =2 \pi i
\end{aligned}
$$

(b) The function

$$
\frac{z^{n}}{z-2}
$$

is holomorphic on the open disk of radius $3 / 2$, which includes the closed unit disk, so that Cauchy's Theorem implies

$$
\oint_{|z|=1} \frac{z^{n}}{z-2} \mathrm{~d} z=0
$$

(c) As $\sin z$ is entire, by Cauchy's integral formula we get

$$
\begin{aligned}
\oint_{|z|=1} \frac{\sin z}{z} \mathrm{~d} z & =2 \pi i \sin 0 \\
& =0
\end{aligned}
$$

(d) As $\cosh z$ is holomorphic and the second derivative of $\cosh z$ is $\cosh z$ we get

$$
\begin{aligned}
\oint_{|z|=1} \frac{\cosh z}{z^{3}} \mathrm{~d} z & =\frac{2 \pi i}{2!} \cosh 0 \\
& =\pi i
\end{aligned}
$$

(e) There are two cases. If $m \leq 0$ then

$$
\frac{e^{z}}{z^{m}}=z^{-m} e^{z}
$$

is entire, so that the integral is zero by Cauchy's theorem. If $m>0$ then we have to compute the $(m-1)$ th derivative of e^{z} at 0 , which is 1 and divide by $(m-1)$!. Putting this together we get

$$
\oint_{|z|=1} \frac{e^{z}}{z^{m}} \mathrm{~d} z= \begin{cases}\frac{2 \pi i}{(m-1)!} & \text { if } m>0 \\ 0 & \text { if } m \leq 0\end{cases}
$$

(f) First note that the distance of 0 to $1+i$ is

$$
\sqrt{2}>\frac{5}{4}
$$

Therefore the open disk of radius $5 / 4$ centred at $1+i$ contains no nonpositive real numbers. In particular $\log z$ is a holomorphic function on an open set containing the closed disk of radius $5 / 4$ centred at $1+i$. The derivative of $\log z$ is $1 / z$. As 1 belongs to the disk of radius 5/4 centred at $1+i$, we have

$$
\begin{aligned}
\oint_{|z-1-i|=5 / 4} \frac{\log z}{(z-1)^{2}} \mathrm{~d} z & =\frac{2 \pi i}{1} \frac{1}{1} \\
& =\pi i .
\end{aligned}
$$

(g) Note that

$$
\frac{1}{\left(z^{2}-4\right) e^{z}}=\frac{e^{-z}}{\left(z^{2}-4\right)}
$$

is holomorphic on the open disk of radius 2 centred at the origin. It's derivative is

$$
\frac{-e^{-z}\left(z^{2}-4\right)-e^{-z} 2 z}{\left(z^{2}-4\right)^{2}}=e^{-z} \frac{4-2 z-z^{2}}{\left(z^{2}-4\right)^{2}}
$$

We have

$$
\begin{aligned}
\oint_{|z|=1} \frac{\mathrm{~d} z}{z^{2}\left(z^{2}-4\right) e^{z}} & =\frac{2 \pi i}{1} e^{0} \frac{4}{4^{2}} \\
& =\frac{\pi i}{2}
\end{aligned}
$$

(h) The circle centred at 1 with radius 2 contains both 0 and 2 but not -2 . There are two obvious ways to deal with the fact that the integrand is not defined at two points of the open disk of radius 2 centred at 1 . The first is to use partial fractions to split the integrand into two pieces, one with a denominator that vanishes at 0 and the other that vanishes at 2 and then integrate both pieces separately.
We have

$$
\frac{1}{z^{2}\left(z^{2}-4\right)}=\frac{A}{z^{2}}+\frac{B}{\left(z^{2}-4\right)}
$$

This gives

$$
1=A\left(z^{2}-4\right)+B z^{2}
$$

It follows that

$$
A=-\frac{1}{4} \quad \text { and } \quad B=\frac{1}{4}
$$

Thus

$$
\begin{aligned}
\oint_{|z-1|=2} \frac{\mathrm{~d} z}{z^{2}\left(z^{2}-4\right) e^{z}} & =\frac{1}{4} \oint_{|z-1|=2} \frac{e^{-z} \mathrm{~d} z}{\left(z^{2}-4\right)}-\frac{1}{4} \oint_{|z-1|=2} \frac{e^{-z} \mathrm{~d} z}{z^{2}} \\
& =\frac{1}{4} 2 \pi i \frac{e^{-2}}{4}-\frac{1}{4} \frac{2 \pi i}{1}-e^{0} \\
& =\frac{1}{8} \pi i e^{-2}+\frac{1}{2} \pi i .
\end{aligned}
$$

The second way to deal with the fact that the denominator is zero at two numbers is to use Cauchy's theorem. The disk of radius 2 centred at 1 contains two disks of radius $1 / 2$, one centred at 0 and the other centred at 2. If we remove both of these disks the resulting region U has boundary the circle of radius 2 and the two circles of radius
$1 / 2$ centred at 0 and 2 , but with the opposite orientation. Cauchy's theorem impies that

$$
\int_{\partial U} \frac{\mathrm{~d} z}{z^{2}\left(z^{2}-4\right) e^{z}}=0 .
$$

It follows that

$$
\oint_{|z-1|=2} \frac{\mathrm{~d} z}{z^{2}\left(z^{2}-4\right) e^{z}}=\oint_{|z|=1 / 2} \frac{\mathrm{~d} z}{z^{2}\left(z^{2}-4\right) e^{z}}+\oint_{|z-2|=1 / 2} \frac{\mathrm{~d} z}{z^{2}\left(z^{2}-4\right) e^{z}}
$$

The first integral we computed in (g), as the integral around a circle of radius $1 / 2$ or 1 is the same. For the second integral we have

$$
\begin{aligned}
\oint_{|z-2|=1 / 2} \frac{\mathrm{~d} z}{z^{2}\left(z^{2}-4\right) e^{z}} & =2 \pi i \frac{1}{2^{2}} \frac{1}{2+2} e^{-2} \\
& =2 \pi i \frac{1}{2^{2}} \frac{1}{2+2} e^{-2} \\
& =\frac{1}{8} \pi i e^{-2} .
\end{aligned}
$$

Putting this together we get

$$
\oint_{|z-1|=2} \frac{\mathrm{~d} z}{z^{2}\left(z^{2}-4\right) e^{z}}=\frac{\pi i}{2}+\frac{1}{8} \pi i e^{-2},
$$

the same as before.
3. The rectangle with vertices $\pm R$ and $\pm R+i t$ has four sides,

$$
\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4},
$$

where γ_{1} is the horizontal line from $-R$ to R, γ_{2} is the vertical line from R to $R+i t, \gamma_{3}$ is the horizontal line from $R+i t$ to $-R+i t$, and γ_{4} is the vertical line from $-R+i t$ to $-R$.
The function $e^{-z^{2} / 2}$ is holomorphic inside the rectangle bounded by γ and so

$$
\oint_{\gamma} e^{-z^{2} / 2} \mathrm{~d} z=0
$$

by Cauchy's integral formula. Note that if $t<0$ our choice of orientation is the reverse orientation to normal. However if you flip the sign of zero, you still get zero.

The length of the two paths γ_{2} and γ_{4} is t, which is independent of R. On both γ_{2} and γ_{4} we have $x= \pm R$ and $|y| \leq|t|$, and so

$$
\begin{aligned}
\left|e^{-z^{2} / 2}\right| & =e^{-x^{2} / 2+y^{2} / 2} \\
& =e^{-x^{2} / 2} e^{y^{2} / 2} \\
& =e^{-R^{2} / 2} e^{y^{2} / 2} \\
& \leq e^{-R^{2} / 2} e^{t^{2} / 2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\int_{\gamma_{2}+\gamma_{4}} e^{-z^{2} / 2} \mathrm{~d} z\right| & \leq \int_{\gamma_{2}+\gamma_{4}}\left|e^{-z^{2} / 2}\right| \mathrm{d} z \\
& \leq \int_{\gamma_{2}+\gamma_{4}}\left|e^{-z^{2} / 2}\right| \mathrm{d} z \\
& \leq 2 l e^{t^{2} / 2} e^{-R^{2} / 2}
\end{aligned}
$$

As R goes to infinity $2 l e^{t^{2} / 2} e^{-R^{2} / 2}$ goes to zero.
For the path γ_{1}, we use the parametrisation $\gamma_{1}(s)=s, s \in[-R, R]$. We have

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{\gamma_{1}} e^{-z^{2} / 2} \mathrm{~d} z & =\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{-x^{2} / 2} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x \\
& =\sqrt{2 \pi}
\end{aligned}
$$

For the path γ_{3}, we use the parametrisation $\gamma_{3}(s)=-s+i t, s \in$ $[-R, R]$. We have

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{\gamma_{3}} e^{-z^{2} / 2} \mathrm{~d} z & =-\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{-(x+i t)^{2} / 2} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} e^{-x^{2} / 2-x i t+t^{2} / 2} \mathrm{~d} x \\
& =e^{t^{2} / 2} \int_{-\infty}^{\infty} e^{-x^{2} / 2} e^{-i t x} \mathrm{~d} x
\end{aligned}
$$

Putting all of this together we get

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} e^{-i t x} \mathrm{~d} x=e^{-t^{2} / 2}
$$

4. The Cauchy integral formula says that

$$
f(a)=\frac{1}{2 \pi i} \oint_{|z-a|=\rho} \frac{f(z)}{z-a} \mathrm{~d} z .
$$

We compute the RHS using the parametrisation

$$
\gamma(\theta)=a+\rho e^{i \theta} \quad \text { where } \quad \theta \in[0,2 \pi] .
$$

We get

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{|z-a|=\rho} \frac{f(z)}{z-a} \mathrm{~d} z & =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(a+\rho e^{i \theta}\right)}{\rho e^{\theta}} i \rho e^{i \theta} \mathrm{~d} \theta \\
& =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(a+\rho e^{i \theta}\right)}{\rho e^{\theta}} i \rho e^{i \theta} \mathrm{~d} \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(a+\rho e^{i \theta}\right) \mathrm{d} \theta
\end{aligned}
$$

Taking the real parts of both sides of the first equality gives

$$
u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+\rho e^{i \theta}\right) \mathrm{d} \theta
$$

Challenge Problems: (Just for fun)
4. (continued). Suppose that a is maximum of u, so that $u(z) \leq m=$ $u(a)$. Then

$$
\begin{aligned}
m & =u(a) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+\rho e^{i \theta}\right) \mathrm{d} \theta \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} m \mathrm{~d} \theta \\
& =m .
\end{aligned}
$$

It follows that the inequality is in fact an equality. But then

$$
u\left(a+\rho e^{i \theta}\right)=m
$$

all the way around the circle, since the integral computes the average value of $u(z)$ on the circle. Thus $u(z)=m$ for any point on any circle in U centred at a. Thus $u(z)=m$ on any disk centred at a. It follows that $u(z)=m$ on any disk in U centred at a point b where $u(b)=m$. It is not hard to conclude that $u(z)=m$ for every $z \in U$, so that u is constant.

Note that $-u$ is the real part of the holomorphic function $-f$. If u has a minimum then $-u$ has a maximum and so $-u$ is constant. But then u is constant.
5. We have

$$
\begin{aligned}
2 \pi i & =\oint_{|z|=R} \frac{1}{z} \mathrm{~d} z \\
& =\oint_{|z|=R} \frac{p(z)}{z p(z)} \mathrm{d} z \\
& =\oint_{|z|=R} \frac{p(0)}{z p(z)} \mathrm{d} z+\oint_{|z|=R} \frac{q(z)}{p(z)} \mathrm{d} z \\
& =\oint_{|z|=R} \frac{p(0)}{z p(z)} \mathrm{d} z \\
& =p(0) \oint_{|z|=R} \frac{1}{z p(z)} \mathrm{d} z
\end{aligned}
$$

To get the first equality we applied Cauchy's integral formula. To get the penultimate equality we applied Cauchy's theorem to the rational function

$$
\frac{q(z)}{p(z)}
$$

which is holomorphic as $p(z)$ has no zeroes.
We now have to estimate

$$
z p(z)
$$

on a big circle. Note that

$$
\frac{1}{p(z)}
$$

goes to zero, as the radius R of the circle goes to infinity. The length of the circle goes like $2 \pi R$. Cancelling of R we still get an upper bound that goes to zero. This is not possible as $2 \pi i$ is not zero.

