
MODEL ANSWERS TO THE EIGHTH HOMEWORK

1. By assumption the image of f is constrained to lie in a vertical strip,

a < Re(w) < b.

We can map this into the unit circle, using the standard tricks. If we
translate by −a, we may assume that the image of f lies in the vertical
strip

0 < Re(w) < b.

In particular it lies in the right hand plane. Rotating by i we may
assume that the image lies in the upper half plane. Applying a Möbius
transformation, as in Homework ??, we may assume that the image
lies in the unit circle. It follows that the composition is constant by
Liouville’s theorem. But then f is constant.
Or we could compose with the exponential map and use the same
argument.
2. We follow the proof of Liouville’s theorem. By assumption there is
a real number M0 such that

|f(z)| ≤M0|zn| for |z| > R.

As f(z) is entire it has a power series expansion whose radius of con-
vergence is ∞,

f(z) =
∑
k

akz
k.

The coefficients are given by Cauchy’s formula

ak =
1

2πi

∮
|z|=r

f(z) dz

zk+1
,

where the radius is any positive real number r. We estimate the abso-
lute value of ak.
The circle of radius r centred at the origin has length

L = 2πr.
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We also have ∣∣∣∣f(z)

zk+1

∣∣∣∣ =
|f(z)|
|zk+1|

=
|f(z)|
rk+1

≤ M0r
n

rk+1

=
M0

rk+1−n .

(16.2) implies that

|ak| =
∣∣∣∣ 1

2πi

∮
|z|=r

f(z) dz

zk+1

∣∣∣∣
≤ LM

≤ 2πr
M0

2πrk+1−n

=
M0

rk−n
.

As r tends to infinity the last quantity tends to zero if k > n. The only
possibility is that if k > n then

|ak| = 0 so that ak = 0.

Thus

f(z) = a0

is a constant.
3. Expand the following functions in power series about ∞:
(a)

1

z2 + 1
=

1

z2
− 1

z4
+

1

z6
− 1

z8
+ . . . ,

see example 17.4.
(b) We have

g(w) = f

(
1

w

)
=

(1/w)2

(1/w)3 + 1

=
w

1 + w3
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As g is holomorphic at 0 it follows that the original function is holo-
morphic at ∞. We have

w

1 + w3
= w(1 + w3 + w6 + w9 + . . . )

= w + w4 + w7 + w10.

Thus
z2

z3 − 1
=

1

z
+

1

z4
+

1

z7
+

1

z10
+ . . .

is the power series expansion at ∞.
(c) We have

g(w) = f

(
1

w

)
= ew

2

.

As g is holomorphic at 0 it follows that the original function is holo-
morphic at ∞. We have

ew
2

= 1 + w2 +
w4

2
+
w6

3!
+ . . . ,

Thus

e1/z
2

= 1 +
1

z2
+

1

2z4
+

1

6z6
+ . . .

is the power series expansion at ∞.
(d) We have

g(w) = f

(
1

w

)
=

sinhw

w
.

g is holomorphic at 0 by the usual argument. The power series for

sinhw

has no constant term and so it is divisible by w. It follows that the
original function is holomorphic at ∞. We have

sinhw

w
=

1

w

(
w +

w3

+

w5

5!
+ . . .

)
= 1 +

w2

3!
+
w4

5!
+ . . . .

Thus

z sinh(1/z) = 1 +
1

6z2
+

1

5!z4
+

1

7!z6
+ . . .

is the power series expansion at ∞.
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4. Let

g(u) = f

(
1

u

)
We have to show g is holomorphic at 0. We have

g(u) =

∫∫
E

dxdy
1
u
− z

=

∫∫
E

u
dxdy

1− uz

= u

∫∫
E

dxdy

1− uz

= u

∫∫
E

(
1 + uz + u2z2 + . . .

)
dxdy

= u

∫∫
E

1 dxdy + u2
∫∫

E

z dxdy + u3
∫∫

E

z2 dxdy + . . . .

This gives us a power series in u∑
cnu

n,

with coefficients

cn =

∫∫
E

zn−1 dxdy.

5. (a)
z2 + 1

z2 − 1
is zero at ±i. To determine the order, we only need to worry about the
numerator. Both zeroes are simple, as the derivative of z2 + 1 is z and
this is not zero at ±1. Or we could use the fact that

z2 + 1 = (z − i)(z + i),

so that both roots are visibly simple.
(b)

1

z
+

1

z5
=
z4 + 1

z5

is zero when
z4 = −1.

These are given by the four primitive eighth roots of unity,

ω = eiπ/4; ω3 = e3iπ/4; ω5 = e5iπ/4 and ω7 = e7iπ/4.

These are all simple zeroes. As before, the denominator does not change
the order of the zeroes and the derivative of z4 + 1 is 3z3 which is non-
zero at all of the roots.
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(c)
z2 sin z

is zero when
z = mπ

is an integer multiple of π. The order of zeroes of a product is the sum
of the order of zeroes. z2 has a double zero at 0 and sin z has simple
zeroes at the integer multiples of π. Thus z2 sin z has simple zeroes at
the non-zero integer multiples of π and has a zero of order three at 0.

Challenge Problems: (Just for fun)

6. The coefficients are either 0 or 1. The sequence to compute the
limsup is therefore the constant sequence

1, 1, 1, 1, . . . .

The nth root of 1 is 1, the reciprocal of 1 is 1 and so the radius of
convergence is 1.
Now pick a root of unity ω. Suppose that ωm = 1. If n ≥ m then m
divides n! so that n! = m · d for some integer d. We have

ωn! = ωmd

= (ωm)d

= 1d

= 1.

Thus

f(rω) =
∑
n

(rω)n!

=
∑
n

rn!ωn!

=
∑
n

rn!ωn!

=
∑
n<m

rn!ωn! +
∑
n≥m

rn!ωn!

= rn!(
∑
n<m

ωn!) +
∑
n≥m

rn!.

Note that we can bring r outside of the first sum, as it is a finite sum.
In the limit as r approaches one from below, the first term approaches
the sum ∑

n<m

ωn!.
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The second term is at least any partial sum, as the terms are negative.
The limit of a partial sum is the number of terms in the partial sum.
It follows that the second term clearly diverges, it approaches ∞.
7. Suppose that the centre of the disk is a and the radius is one. Shifting
by −a we may assume that the centre of the disk is 0. Multiplying by
1/ρ we may assume that we have the unit disk. Composing with 1/z
we may assume that we miss the outside of the unit disk, not the inside.
But to say we miss the outside of the unit disk is to say that the image
lies in the unit disk. Therefore we have a bounded function g (bounded
by one). g is the composition of f with a Möbius transformation T .
Therefore g is constant by Louiville’s theorem. As T has an inverse, it
follows that f is constant.
Note that this easily implies (1), since the complement of a strip con-
tains a lot of open disks.
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