MODEL ANSWERS TO THE NINTH HOMEWORK

1. The function

$$
\frac{1}{z^{2}-z}
$$

is not holomorphic at $z=0$ and at $z=1$. There are two relevant circles, the circle of radius 1 centred at -1 and the circle of radius 2 centred at -1 . The point $1 / 2$ is between these two circles, so we want to compute the Laurent series for the annulus

$$
U=\{z \in \mathbb{C}|1<|z+1|<2\} .
$$

We have

$$
\begin{aligned}
\frac{1}{z^{2}-z} & =\frac{1}{z(z-1)} \\
& =\frac{1}{z-1}-\frac{1}{z} .
\end{aligned}
$$

The first function is holomorphic on the disk of radius 2 centred at -1 . The second function is holomorphic on the region $|z+1|>1$ and is zero at infinity. We have

$$
\begin{aligned}
\frac{1}{z-1} & =\frac{1}{-2+z+1} \\
& =-\frac{1}{2} \frac{1}{1-(z+1) / 2} \\
& =-\frac{1}{2}-\frac{z+1}{4}-\frac{(z+1)^{2}}{8}+\ldots
\end{aligned}
$$

This is a power series centred at $z=-1$ with radius of convergence 2 . For the second function we have

$$
\begin{aligned}
-\frac{1}{z} & =-\frac{1}{-1+(z+1)} \\
& =\frac{1}{z+1} \frac{1}{1-1 /(z+1)} \\
& =\frac{1}{z+1}+\frac{1}{(z+1)^{2}}+\frac{1}{(z+1)^{3}}+\ldots
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{1}{z^{2}-z} & =\frac{1}{z-1}-\frac{1}{z} \\
& =\cdots+\frac{1}{(z+1)^{3}}+\frac{1}{(z+1)^{2}}+\frac{1}{z+1}-\frac{1}{2}-\frac{z+1}{4}-\frac{(z+1)^{2}}{8}+\ldots
\end{aligned}
$$

is the Laurent expansion.
(b) The function

$$
\frac{z-1}{z+1}
$$

is not holomorphic at $z=-1$. There are two relevant circles, the circle of radius 0 centred at -1 and the circle of radius ∞ centred at -1 . The point $1 / 2$ is between these two circles, so we want to compute the Laurent series for the annulus

$$
U=\{z \in \mathbb{C}|0<|z+1|<\infty\} .
$$

We have

$$
\begin{aligned}
\frac{z-1}{z+1} & =\frac{z+1-2}{z+1} \\
& =-\frac{2}{z+1}+1
\end{aligned}
$$

This is a Laurent expansion and so it is the Laurent expansion.
2. (a) We have

$$
\frac{1}{z+z^{2}}=\frac{1}{z(z+1)}
$$

This has a simple pole at $z=0$.

$$
\begin{aligned}
\operatorname{Res}_{0} \frac{1}{z+z^{2}} & =\lim _{z \rightarrow 0} \frac{1}{z+1} \\
& =1
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
z \cos \left(\frac{1}{z}\right) & =z\left(1-\frac{1}{2 z^{2}}+\frac{1}{4!z^{4}}+\ldots\right) \\
& =z-\frac{1}{2 z}+\frac{1}{4!z^{3}}+\ldots
\end{aligned}
$$

It follows that the residue at $z=0$ is $-1 / 2$.
(c) As $\sinh z$ has a simple zero at 0 it follows that

$$
\frac{\sinh z}{z^{4}\left(1-z^{2}\right)}
$$

has a pole of order 3 at 0 . We could try multiplying by z^{3} and differentiating twice to get the residue; this doesn't seem to work very well.
If we expand the power series for $\sinh z$ and for the reciprocal of $1-z^{2}$ we get:

$$
\frac{\sinh z}{z^{4}\left(1-z^{2}\right)}=\frac{1}{z^{4}}\left(z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\ldots\right)\left(1+z^{2}+z^{4}+\ldots\right)
$$

We want the coefficient of $1 / z$ after we multiply out. So we want the coefficient of z^{3} from the second two expressions. This is

$$
1+\frac{1}{3!}=\frac{7}{6} .
$$

Therefore the residue is $7 / 6$.
3. As $(z-a)^{n} f(z)$ is bounded near a and it has an isolated singularity at a, it follows that $(z-a)^{n} f(z)$ has a removable singularity at $z=a$. In particular there is a holomorphic function $g(z)$ such that

$$
(z-a)^{n} f(z)=g(z)
$$

Suppose that $g(z)$ has a zero of order m at a. Then there is a function $h(z)$ holomorphic at a such that

$$
g(z)=(z-a)^{m} h(z) \quad \text { and } \quad h(a) \neq 0
$$

It follows that

$$
(z-a)^{n} f(z)=(z-a)^{m} h(z) .
$$

If $m \geq n$ then

$$
f(z)=(z-a)^{m-n} h(z)
$$

has a removable singularity at a. Otherwise

$$
f(z)=\frac{h(z)}{(z-a)^{n-m}} .
$$

In this case $f(z)$ has a pole order at most n.
4. (a) We use the residue theorem. The function

$$
\frac{z}{\cos z}
$$

has isolated singularities at

$$
z= \pm \pi / 2
$$

which are both inside the circle of radius 2 , as $\pi / 2<2 . \cos z$ has simple singularities at these points and so the function

$$
\frac{z}{\cos z}
$$

has simple poles at $\pm \pi / 2$. To compute the residue at $\pi / 2$ we multiply by $(z-\pi / 2)$ and take a limit:

$$
\begin{aligned}
\operatorname{Res}_{\pi / 2} \frac{z}{\cos z} & =\lim _{z \rightarrow \pi / 2} \frac{z(z-\pi / 2)}{\cos z} \\
& =\lim _{z \rightarrow \pi / 2} \frac{2 z-\pi / 2}{-\sin z} \\
& =-\frac{\pi}{2}
\end{aligned}
$$

To compute the residue at $-\pi / 2$ we multiply by $(z+\pi / 2)$ and take a limit:

$$
\begin{aligned}
\operatorname{Res}_{-\pi / 2} \frac{z}{\cos z} & =\lim _{z \rightarrow-\pi / 2} \frac{z(z+\pi / 2)}{\cos z} \\
& =\lim _{z \rightarrow-\pi / 2} \frac{2 z+\pi / 2}{-\sin z} \\
& =-\frac{\pi}{2} .
\end{aligned}
$$

Now we apply the residue theorem:

$$
\begin{aligned}
\oint_{|z|=2} \frac{z}{\cos z} \mathrm{~d} z & =2 \pi i \operatorname{Res}_{\pi / 2} \frac{z}{\cos z}+2 \pi i \operatorname{Res}_{-\pi / 2} \frac{z}{\cos z} \\
& =2 \pi i\left(-\frac{\pi}{2}-\frac{\pi}{2}\right) \\
& =-2 \pi^{2} i .
\end{aligned}
$$

(b) The function

$$
\frac{e^{-z}}{z^{2}}
$$

has an isolated singularity at zero, which is inside the circle. As the function has a double pole at 0 , to compute the residue we multiply by z^{2} and differentiate once:

$$
\begin{aligned}
\operatorname{Res}_{0} \frac{e^{-z}}{z^{2}} & =\lim _{z \rightarrow 0}-e^{-z} \\
& =-1
\end{aligned}
$$

Now we apply the residue theorem:

$$
\begin{aligned}
\oint_{|z|=3} \frac{e^{-z}}{z^{2}} \mathrm{~d} z & =2 \pi i \operatorname{Res}_{0} \frac{e^{-z}}{z^{2}} \\
& =-2 \pi i
\end{aligned}
$$

(c) The function

$$
z^{2} e^{1 / z}
$$

has a singularity at $z=0$. As we have an essential singularity we simply have to compute the Laurent series:

$$
\begin{aligned}
z^{2} e^{1 / z} & =z^{2}\left(1+\frac{1}{z}+\frac{1}{2!z^{2}}+\frac{1}{3!z^{3}}+\ldots\right) \\
& =z^{2}+z+\frac{1}{2}+\frac{z}{6}+\ldots
\end{aligned}
$$

Thus the residue is

$$
\operatorname{Res}_{0} z^{2} e^{1 / z}=\frac{1}{6}
$$

Now we apply the residue theorem:

$$
\begin{aligned}
\oint_{|z|=1} z^{2} e^{1 / z} \mathrm{~d} z & =2 \pi i \operatorname{Res}_{0} z^{2} e^{1 / z} \\
& =\frac{\pi i}{3}
\end{aligned}
$$

