PRACTICE PROBLEMS FOR THE SECOND MIDTERM

1. (a) Give the definition of:
 (i) a power series;
 (ii) the centre of a power series;
 (iii) the radius of convergence of a power series;
 (iv) a (complex) analytic function;
 (v) the Riemann zeta function;
 (vi) (complex) differentiable at a point;
 (vii) a holomorphic function;
 (viii) an entire function;
 (ix) the tangent vector to a curve;
 (x) a conformal map;
 (xi) a line integral;
(b) State
 (i) the Cauchy-Riemann equations;
 (ii) Green’s theorem;
 (iii) Cauchy’s theorem;
 (iv) Cauchy’s integral formula.

2. Show that
 \[1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \]
diverges, whilst
 \[1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \]
converges.

2. Find the first five terms of the power series expansion of
 \[\frac{e^z}{1 - z} \]
centred at 0. What is the radius of convergence?
3. Where is the following function holomorphic? Find its derivative
 \[\frac{e^{2z^2}}{z^2 - 5z + 6}. \]
4. Show that the first quadrant
 \[\{ z \in \mathbb{C} \mid 0 < \text{Arg}(z) < \frac{\pi}{2} \} \]
and the unit circle are conformally equivalent.
5. Write down the polar form of the Cauchy-Riemann equations and check that the functions

\[u(r, \theta) = r^m \cos(m\theta) \quad \text{and} \quad v(r, \theta) = r^m \sin(m\theta) \]

satisfy these equations.

6. Suppose that \(P \) and \(Q \) are two functions on the annulus

\[V = \{ \, z \in \mathbb{C} \mid a < |z| < b \, \} \]

which have continuous partial derivatives. If

\[\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \]

then show that the integral

\[\int_{\gamma_r} P \, dx + Q \, dy \]

is independent of \(r \), where \(\gamma_r \) is the circle of radius \(r \in (a, b) \) centred at the origin and we traverse \(\gamma_r \) counterclockwise.