PRACTICE PROBLEMS FOR THE SECOND MIDTERM

1. (a) Give the definition of:
(i) a power series;
(ii) the centre of a power series;
(iii) the radius of convergence of a power series;
(iv) a (complex) analytic function;
(v) the Riemann zeta function;
(vi) (complex) differentiable at a point;
(vii) a holomorphic function;
(viii) an entire function;
(ix) the tangent vector to a curve;
(x) a conformal map;
(xi) a line integral;
(b) State
(i) the Cauchy-Riemann equations;
(ii) Green's theorem;
(iii) Cauchy's theorem;
(iv) Cauchy's integral formula.
2. Show that

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots
$$

diverges, whilst

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots
$$

converges.
2. Find the first five terms of the power series expansion of

$$
\frac{e^{z}}{1-z}
$$

centred at 0 . What is the radius of convergence?
3. Where is the following function holomorphic? Find its derivative

$$
\frac{e^{2 z^{2}}}{z^{2}-5 z+6} .
$$

4. Show that the first quadrant

$$
\left\{z \in \mathbb{C} \left\lvert\, 0<\operatorname{Arg}(z)<\frac{\pi}{2}\right.\right\}
$$

and the unit disk are conformally equivalent.
5. Write down the polar form of the Cauchy-Riemann equations and check that the functions

$$
u(r, \theta)=r^{m} \cos (m \theta) \quad \text { and } \quad v(r, \theta)=r^{m} \sin (m \theta)
$$

satisfy these equations.
6. Suppose that P and Q are two functions on the annulus

$$
V=\{z \in \mathbb{C}|a<|z|<b\}
$$

which have continuous partial derivatives. If

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

then show that the integral

$$
\int_{\gamma_{r}} P \mathrm{~d} x+Q \mathrm{~d} y
$$

is independent of r, where γ_{r} is the circle of radius $r \in(a, b)$ centred at the origin and we traverse γ_{r} counterclockwise.

