
Midterm 1 Solutions Version A

1.(2 points) Carefully read the instructions on the front page of this exam.

2.(10 points) Compute the definite integral
log(π)∫

log( 3π
4
)

sec2(ey)eydy

Solution: We start with the substitution u = ey, so that du
dy

= ey. Then we have
that

log(π)∫
log( 3π

4
)

sec2(ey)eydy =

log(π)∫
log( 3π

4
)

sec2(u(y))
du

dy
dy

=

y=log(π)∫
y=log( 3π

4
)

sec2(u)du

=

u=π∫
u= 3π

4

sec2(u)du

= [tan(u)]π3π
4

= tan(π)− tan(
3π

4
)

= 0− (−1)

= 1.
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3.(10 points) Find the volume of the solid obtained by rotating the region bounded by the curves
x =

√
log(y), y = e2, and x = 0 around the y-axis.

Solution: The graph of the area in question looks like this:
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Here is how you could figure out how to set up the integral even without drawing the
graph. Since we are rotating around the y-axis—which is the same as the line x = 0—
we know that we need to be integrating the cross sectional area with respect to y.
The curve x =

√
log(y) intersects x = 0 when y = 1, and (since log(y) is positive for

y > 1) lies to the right of x = 0. This means that in the formula for volume, the outer
radius of the cross section is given by the distance between x =

√
log(y) and the

y-axis, so router(y) =
√

log(y). The inner radius is then the distance between x = 0
and itself, meaning rinner(y) = 0. The bounds of integration are from y = 1 to y = e2.

Now we have everything we need to set up the integral:

V = π

∫ e2

1

router(y)2 − rinner(y)2dy

= π

∫ e2

1

(
√

log(y)))2 − 02dy

= π

∫ e2

1

log(y)dy.

To calculate the integral, we can integrate by parts. Set

u = log(y),
dv

dy
= 1⇒ dv = dy

so that
du

dy
=

1

y
⇒ du =

1

y
dy, v =

∫
dy = y.
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From the formula for integration by parts,

V = π

∫ e2

1

log(y)dy

= π

[∫
udv

]e2
1

= π

[∫
uv −

∫
vdu

]e2
1

= π

[
y log(y)−

∫
y

y
dy

]e2
1

= π [y log(y)− y]e
2

1

= π
[
(e2 log(e2)− e2)− (1 · log(1)− 1)

]
= π

[
(2e2 − e2)− (0− 1)

]
= π(e2 + 1).
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4. (a)(5 points) Compute the antiderivative ∫
ueudu

Solution: We can solve this one using integration by parts. A good choice is
to let w = u, and ds = eudu (we’re using w and s instead of u and v to avoid
confusion, since u is already taken). Taking the appropriate derivatives and
antiderivatives, we end up with

w = u, dw = du, ds = eudu, s = eu.

Now the formula for integration by parts says that∫
wds = ws−

∫
sdw

which brings us to ∫
ueudu = ueu −

∫
eudu

= ueu − eu + C.
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(b)(5 points) Compute the antiderivative ∫
x13ex

7

dx

Solution: The ex
7

looks a little intimidating, so we try to get rid of it using
the substitution u = x7. Then du = 7x6dx, which means that dx = 1

7x6
du. Our

integral then translates to ∫
x13

7x6
eudu =

∫
1

7
x7eudu

=
1

7

∫
ueudu.

From part a, we know that

1

7

∫
ueudu =

1

7
(ueu − eu) + C

and remembering that u = x7, we arrive at∫
x13ex

7

dx =
1

7
(x7ex

7 − ex7) + C.
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5.(10 points) Find the area of the shaded region between the lemniscate r2 = 3 sin(2θ) and the circle
r =
√

6 cos(θ). Hint: you may find the formulas sin(2θ) = 2 sin(θ) cos(θ) and cos2(θ) =
1+cos(2θ)

2
useful.

−1 1 2

−1

1

Solution: We first find the points of intersection between the two curves, by setting
the two functions equal and solving for θ. In this case, we can square the equation
of the circle to and set it equal to the equation for the lemniscate:

3 sin(2θ) = (
√

6 cos(θ))2

= 6 cos2(θ).

The given formula simplies this to

6 sin(θ) cos(θ) = 6 cos2(θ)

⇒ sin(θ) cos(θ) = cos2(θ).

The solutions to this equation are when cos(θ) = 0 (so both sides are 0), or when
cos(θ) 6= 0 and we can divide both sides by cos(θ) to obtain a solution to

cos(θ) = sin(θ)

which happens when tan(θ) = 1. The solutions to cos(θ) = 0 between 0 and 2π are

θ =
π

2
,
3π

2

while the solutions to tan(θ) = 1 are

θ =
π

4
,
5π

4
.
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From the graph, we can see that the rightmost intersection point corresponds to
r 6= 0, so cos(θ) 6= 0 and we are at the angle π

4
(because the point of intersection lies

in the first quadrant) 1. The other intersection point occurs when r = 0, and the
next solution to cos(θ) = 0 as we travel counterclockwise from θ = π

4
is θ = π

2
. We

can also read from the graph that the lemniscate is on the outside in between these
two bounds.

Plugging everything in to the formula for the area of the sector enclosed by two
polar curves yields

A =
1

2

∫ π
2

π
4

r2outer − r2innerdθ

=
1

2

∫ π
2

π
4

3 sin(2θ)− 6 cos2(θ)dθ

=
1

2

∫ π
2

π
4

3 sin(2θ)− 6 · 1 + cos(2θ)

2
dθ

=
3

2

∫ π
2

π
4

sin(2θ)− 1− cos(2θ)dθ

=
3

2

[
−1

2
cos(2θ)− θ − 1

2
sin(2θ)

]π
2

π
4

=
3

2

[
(−1

2
cos(2 · π

2
)− π

2
− 1

2
sin(2 · π

2
))− (−1

2
cos(2 · π

4
)− 1

π

4
− 1

2
sin(2 · π

4
))

]
= −3

2

[
(
1

2
cos(π) +

π

2
+

1

2
sin(π))− (

1

2
cos(

π

2
)) +

π

4
+

1

2
sin(

π

2
))

]
= −3

2

[
(
1

2
· −1 +

π

2
+

1

2
· 0)− (

1

2
· 0 +

π

4
+

1

2
· 1
]

= −3

2
(
π

4
− 1)

=
3

2
(1− π

4
).

1actually, we could just as easily have started with 5π
4 . This is because the points (cos( 5π

4 ), 5π
4 ) and

(cos(π
4 ), π

4 ) are the same, as we see by noticing that cos( 5π
4 ) = − cos(π

4 ). The only difference is that we
would need to use a different upper bound later in our integral


