Partial Fractions

May 3, 2019

These notes give further motivation for the forms of the partial expansions that we have
seen in class. The starting point is the following:

Theorem. If f(x) = i% is a proper rational function (ie, p and q are polynomials and the

q(
degree of p is smaller than that of q), and q has distinct linear factors of multiplicity 1
¢(z) = (z —ar)(x — az) - (v — an)
then f(x) has a partial fraction expansion (PFE)

A A,
fla)=—"— 4.+
T — ay T — an,

for some constants Ay through A,.

We sketched a proof of this in class by equating the coefficients of p(x)—a degree < n—1
polynomial since f is proper—to those of the polynomial ¢(z)f(z) when we multiply the
right hand side of the PFE in the theorem. We found that the n different coefficients of p
give n linear equations in A; through A,,, and remembered that in general n linear equations
for n unknown variables will have a unique solution. Thus for any p, q of the given form, we
can find Ay, As, - -+ A, making the equation in the partial fraction expansion true.

Of course, not every proper rational function will have ¢ in such a convenient form. In
some cases, a little more is required: when we have an irreducible quadratic, or when we
have repeated factors.

1 Irreducible real quadratics

Suppose we have already performed any necessary division, so that we start with a rational
function f(z) = ‘;%, where p and ¢ are both real polynomials and the degree of p is smaller
than that of g. We can get a partial fraction expansion for f by factoring ¢(z) as a product
of powers of real irreducible quadratic and real linear factors. For simplicity, suppose that

q(z) just has one quadratic and one linear factor:
q(z) = (x — a)(2? + bx + ¢)
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with a, b, c real. If 2% + bz + c is irreducible over the reals (so it has no real roots), then it
has two complex conjugate roots § and (3, hence (by the Fundamental Theorem of Algebra,
for example) factors as B

2 +br+c=(z—B)(z-p).
We know from class that f’s partial expansion is supposed to have the form

p(x) _ p(x) A Bz +C

q(z)  (z—a)(@?+bx+c) x—a+x2+bx+c;

here is one way to explain the presence of the Bx + C on top. If we factor ¢ into (complex)
linear factors instead, we would have

p(x)
A Er ey Ty
and our usual partial fraction expansion when we have distinct linear factors would say that
A D E
o) e=F @)
This works just as well over the complex numbers as it does over the reals (but D and E

may not be real anymore), but we want to end up with something real if we started with a
real rational function.

fz) =

. D E . . .
Claim. p T g s a real rational function.

Proof. This is true because % + (gf 5= flz) — ﬁ is the difference of two real rational
functions, so it should be real as well. To see this explicitly, we can use the equation

p(a) = Alx = f)(z = B) + D(z — a)(z — B) + E(z —a)(z = f)
= A(z* + bz +¢)+ D(x — a)(z — B) + E(z — a)(z — B).

Now we can start plugging in values to find relationships between A, D, and E. We start
with = a, which yields

p(a) = A(a® + ba + ¢) + D(0) + E(0).

As a® + ba + c is real (because b and ¢ are) but not 0 (because then a would be a root, but
22 + bz + ¢ has no real roots), we can divide by it to get

__ pla)
(a2 +ba+c)

so at least A is real, as we expected.

Next, we plug in « = 3, which amounts to

p(8) = A(0) + D(B — a)(B — B) + £(0),
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which we can solve for D:

p__ pB
(8 —a)(B—=5)
Plugging in = = 3 instead, we arrive analogously at
po_ P8
(6 —a)(B=P)

Why did we do this? These expressions actually show that F = D, because (as we discussed
when we applied the fundamental theorem of algebra to factor real polynomials) p(z) being

real implies that p(8) = p(/), and all of the other factors in the expressions are conjugates
of each other.

Now we can rewrite the partial fraction as

A N D N D
(x—a) z=5 (z-P)

and find a common denominator for the two complex terms. To do this, note that

fz) =

D . D _Du-p __Da-p)
B @B @ Ha-p) @ Ba-D)
_ Dx+Dx—Dj3— D
N 22 +bxr+c
(D+ D)x — (DS + Dp)
2 +bxr+c

Let B= D+ D and C = —(DB + D). The B is real, because it is a complex number plus

its conjugate. But DS = Df3, so C is —1 times a sum of conjugates as well, meaning C' is
real. Therefore, we have the (real) PFE

p(z) A Bx +C

(x —a)(2x? + bz +c) x—a+w2+bx+c

that we set out to find. O]

2 Repeated linear factors

So far, we have only considered the case when all of the factors of ¢ are distinct. What
should we do if this does not happen? To begin, consider the proper (so deg(p) < deg(q) =
n + 1) rational function

B p(x)
flw) = (@ —a)"(z —b)
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where a # b,n > 1. Based off of the other cases we know, we could guess that the PFE of f
is

A B

M= T ey

There are many ways to see that this will not work in general. The course supplement
explains this using poles: f has a pole of order n at x = a, but the PFE should also reflect
the poles of lower order at x = a. Another way to see this is by comparing coefficients: if
we are to solve

p(z) = A(x —b) + B(x — a)"

then we have n + 1 equations (the maximum degree of p is n, so there are at most n + 1
nonzero coefficients) for only 2 unknowns, which does not usually admit a solution. Even
more concretely, if we expand (z — a)™ we would see that the 2" coefficient of the right hand
side is just B, so B will be 0 unless p(x) truly has degree n, not anything lower. This rules
out many valid choices for p immediately.

What can we do instead? As the book and the supplement suggest, we have the following;:

_ @)

Theorem. If f is a proper rational function of the form f(z) = Gayng Where (x—a) does

not divide g(z) (ie, a is not a root of g) then f’s PFE looks like

_ h(x) By N B, N B,
S g(r) w—a (z—a) (z—a)

/()

where h has lower degree than g.

Proof. For this to be true, we must solve (after clearing the denominators)
p(x) = h(z)(z — a)" + Big(z)(z — a)" ' + -+ + Bug(x).

Here the unknowns we are solving for are the coefficients of h and B; through B,,. Since h is
supposed to have smaller degree than g, it has at most deg(g) nonzero coefficients. Thus, the
number of unknowns is n+deg(g). On the other hand, by the properness assumption, deg(p)
is smaller than the degree of (z — a)"g(z), which has degree n + deg(g). Since deg(p) is at
most n+deg(g) —1, it has at most n+deg(g) nonzero coefficients, which allows for n+deg(g)
linear equations. Thus, we have n + deg(g) linear equations for n + deg(g) unknowns, which
we can solve to get the desired PFE. O

Notice that we genuinely needed all of the powers of (z — a) in the denominator so that
we could get enough coefficients to solve all of the equations. This makes sense, because
f’i L+ (gf—f;)? (x]f—z)n is the most general form of a rational function with poles only at x = a
that has a pole of order n.
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3 Repeated quadratic factors

The only mystery left is what to do with repeated quadratic factors. This actually follows
from the previous case and the reasoning in section 1. If we have a proper rational function
f(z) = m, with 2% + bz + ¢ irreducible over the reals, then we can rewrite f using
the factorization 2 + bx + ¢ = (v — B)(z — 3):

N p(r)
) = B — Brgte)

Now we have converted to the case of repeated linear factors, so we know that the PFE is

h D D D, E E E,
_ ($)+ 1, 2, T S 2

A e ey R P P Ay I Py e Py

The only tricky part, which we will omit, is to check that we can combine terms as in
section 1.

Fact. E; = ljj for each j from 1 to n.
Taking this as a given, we can find common denominators and end up with a real PFE

in the same way. Altogether, this shows

Theorem. If f is a proper rational function of the form f(x) = m where v2+bx+c
does not divide g(x) then f’s PFE looks like

h(l‘) Bll' + Cl BQZ)Z + 02 Bnl' + Cn
g(z)  224+br+c  (22+br+c)?  (22+br+co)

fz) =

where h has lower degree than g.

The upshot here is that as soon as we learn how to integrate these types of terms on
Monday, we will be able to integrate any rational function.
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