Math 180A Calendar, Fall 2017

Week Monday Tuesday Wednesday Thursday Friday
0
Sep 25 Sep 26 Sep 27 Sep 28 Sep 29
Topic 1

1
Oct 2
Topic 2
Oct 3 Oct 4
Topic 3
Homework 1 due
Oct 5 Oct 6
Topics 3-4
2
Oct 9
Topics 4-5
Oct 10 Oct 11
Topics 5-6
Homework 2 due
Oct 12 Oct 13
Topic 6
3
Oct 16
Topics 6-7
Oct 17 Oct 18
Topics 7-8
Homework 3 due
Oct 19 Oct 20
Topic 9
4
Oct 23
Topic 10
Oct 24 Oct 25
Topic 11
Homework 4 due
Oct 26 Oct 27
Exam 1
5
Oct 30
Topic 12
Oct 31 Nov 1
Topic 13
Homework 5 due
Nov 2 Nov 3
Topics 13-14
6
Nov 6
Topic 15
Nov 7
Nov 8
Topic 16
Homework 6 due
Nov 9 Nov 10
No class
7
Nov 13
Topic 17
Nov 14
Nov 15
Topic 18
Homework 7 due
Nov 16 Nov 17
Topic 19
8
Nov 20
Topic 20
Nov 21 Nov 22
Topic 21
Homework 8 due
Nov 23 Nov 24
No class
9
Nov 27
Topic 22
Nov 28
Nov 29
Topic 22
Homework 9 due
Nov 30 Dec 1
Exam 2
10
Dec 4
Topic 23
Dec 5
Dec 6
Topic 23
Dec 7 Dec 8
Review
Homework 10 due
11 Dec 11  Dec 12  Dec 13  Dec 14  Dec 15
Final Exam
3:00 PM

Course Topics

Below is a list of the topics that will be covered in Math 180A, together with references to the relevant sections in the textbooks by Ross and Durrett.


Topic Ross Durrett
1 Definition of Probability 2.1-2.3, 2.7       1.1-1.2
2 Basic Properties of Probability 2.4 1.1.2
3 Combinatorial Probability 1.1-1.5, 2.5 2.1, 2.2, 2.4
4 Inclusion-Exclusion Formula 2.4-2.5 2.5
5 Conditional Probability 3.2 3.1
6 Independence 3.4 1.3
7 Bayes Rule 3.3 3.2-3.3
8 Discrete Random Variables 4.1-4.2 1.4
9 Binomial and Geometric Distributions 4.6, 4.8 1.4, 2.2
10 Poisson Distribution 4.7 2.3
11 Expected Values of Discrete Random Variables 4.3-4.4 1.5
12 Variance of Discrete Random Variables 4.5 1.6
13 Continuous Random Variables 5.1, 5.3, 5.7 5.1-5.3
14 Expected Values of Continuous Random Variables       5.2 5.1.1
15 Exponential Distribution 5.5, 5.6.1 5.1
16 Normal Distribution 5.4 6.4
17       Joint Distributions 6.1 3.4, 5.4
18 Independence of Random Variables 6.2 5.5
19 Expectations of Sums 7.2 6.2
20 Variance of Sums 7.3-7.4 6.2
21 Sums of Independent Random Variables 6.3 6.1
22 Law of Large Numbers 8.2, 8.4 6.3
23 Central Limit Theorem 5.4.1, 8.3 6.5-6.6