1. Suppose X is a nonnegative random variable and $P(X > 0) > 0$. Show that $E[X] > 0$.

2. Suppose X is a random variable such that $E[|X|] < \infty$. Prove that for all $\epsilon > 0$, there exists a simple random variable Y such that $E[|X - Y|] < \epsilon$.

3. (Durrett, Exercise 1.6.11, p. 32) Suppose X is a random variable such that $E[|X|^k] < \infty$. Suppose $0 < j < k$. Show that $E[|X|^j] \leq (E[|X|^k])^{j/k}$.

4. (Durrett, Exercise 1.6.6, p. 31) Suppose X is a nonnegative random variable such that $0 < E[X^2] < \infty$. Show that

$$P(X > 0) \geq \frac{(E[X])^2}{E[X^2]}.$$

(Hint: Apply the Cauchy-Schwarz Inequality to $X 1_{\{X > 0\}}$.)

5. Suppose X is a random variable and $a > 0$.

 (a) Show that for all $b > 0$, we have $P(X \geq a) \leq E[(X + b)^2]/(a + b)^2$.

 (b) Show that if $E[X] = 0$ and $\text{Var}(X) = \sigma^2$, then

$$P(X \geq a) \leq \frac{\sigma^2}{\sigma^2 + a^2}.$$

Also show that for each $a > 0$ and $\sigma^2 > 0$, there is an X for which equality holds.