Homework #1
(due Wednesday, January 13, in class)

1. Let U_1, U_2, \ldots be i.i.d. random variables, each having the uniform distribution on $[0,1]$. Let $M_n = \min\{U_1, \ldots, U_n\}$. Let X have the exponential distribution with parameter $\lambda = 1$. Prove that $nM_n \Rightarrow X$.

2. (Durrett, Exercise 3.2.4, p. 101) Let $g : \mathbb{R} \to [0, \infty)$ be a continuous function. Suppose X, X_1, X_2, \ldots are random variables such that $X_n \Rightarrow X$. Show that

$$\liminf_{n \to \infty} E[g(X_n)] \geq E[g(X)].$$

3. (Durrett, Exercise 3.2.2, p. 99) Let X_1, X_2, \ldots be independent random variables with distribution function F. Let $M_n = \max_{1 \leq m \leq n} X_m$.

(a) Suppose $\alpha > 0$, and $F(x) = 1 - x^{-\alpha}$ for $x \geq 1$. Suppose Y_1 has distribution function F_1, where $F_1(x) = \exp(-x^{-\alpha})$ for all $x > 0$. Show that

$$n^{-1/\alpha}M_n \Rightarrow Y_1.$$

(b) Suppose $\beta > 0$, and $F(x) = 1 - |x|^\beta$ for $-1 \leq x \leq 0$. Suppose Y_2 has distribution function F_2, where $F_2(x) = \exp(-|x|^\beta)$ for all $x < 0$. Show that

$$n^{1/\beta}M_n \Rightarrow Y_2.$$

(c) Suppose $F(x) = 1 - e^{-x}$ for all $x \geq 0$. Suppose Y_3 has distribution function F_3, where $F_3(x) = \exp(-e^{-x})$ for all $x \in \mathbb{R}$. Show that

$$M_n - \log n \Rightarrow Y_3.$$

Note: the distributions of Y_1, Y_2, and Y_3 are called the Fréchet, Weibull, and Gumbel distributions respectively. All three of these distributions are called extreme value distributions. It is possible to show (but you do not have to) that, up to scaling, these are the only distributions that can arise as limits of random variables of the form $(M_n - b_n)/a_n$.

4. (Durrett, Exercise 3.2.11, p. 105) Let $(X_n)_{n=1}^{\infty}$ be a sequence of integer-valued random variables, and let X be an integer-valued random variable. Show that $X_n \Rightarrow X$ if and only if for all integers m,

$$\lim_{n \to \infty} P(X_n = m) = P(X = m).$$