Homework #6
(due Wednesday, February 17, in class)

1. Show that two \(\mathbb{R} \)-valued random variables \(X \) and \(Y \) are independent if and only if
 \[
 E[f(X)|Y] = E[f(X)] \quad \text{a.s.}
 \]
 for all bounded measurable functions \(f : \mathbb{R} \to \mathbb{R} \).

2. (similar to Durrett, Exercise 5.1.14, p. 231) Let \(X \) be a \(\mathbb{R} \)-valued random variable on \((\Omega, \mathcal{F}, P)\), and let \(\mathcal{G} \subset \mathcal{F} \) be a \(\sigma \)-field. Suppose \(Q \) is a regular conditional distribution for \(X \) given \(\mathcal{G} \). Suppose \(f : \mathbb{R} \to \mathbb{R} \) is a measurable function such that \(E[|f(X)|] < \infty \). Show that
 \[
 E[f(X)|\mathcal{G}](\omega) = \int_{\mathbb{R}} f(x) Q(\omega, dx) \quad \text{a.s.}
 \]
 (Hint: start with the case in which \(f \) is an indicator function.)

3. Suppose \(X \) is a \(\mathbb{R} \)-valued random variable with \(E[X^2] < \infty \). Suppose \(\mathcal{G} \) is a \(\sigma \)-field and \(a \in \mathbb{R} \). Show that \(E[X1_{\{X \geq a\}}|\mathcal{G}] \leq \sqrt{E[X^2|\mathcal{G}]} P(X \geq a|\mathcal{G}) \) \quad \text{a.s.}
 (Hint: use regular conditional distributions.)

4. (similar to Durrett, Exercise 5.1.13, p. 230) Suppose \(f : \mathbb{R}^2 \to [0, \infty) \) is a measurable function, and \(X \) and \(Y \) are random variables with joint density \(f \). Let \(g(x) = \int_{\mathbb{R}} f(x, y) dy \), and for simplicity assume \(g(x) > 0 \) for all \(x \in \mathbb{R} \). Let \(h(x, y) = f(x, y)/g(x) \). Now for \(\omega \in \Omega \) and \(B \in \mathcal{B}(\mathbb{R}) \), let
 \[
 Q(\omega, B) = \int_{B} h(X(\omega), y) \, dy.
 \]
 (a) Show that \(g \) is a density for \(X \).
 (b) Show that \(Q \) is a regular conditional distribution for \(Y \) given \(\sigma(X) \).