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A birth and death process

To model tumor growth, we consider a birth and death process:

I We begin with one individual (cell) at time zero.

I Each individual independently gives birth at rate λ.

I Each individual independently dies at rate µ.

I We assume λ > µ and let r = λ− µ be the exponential growth rate.

We observe genetic data from a sample of size n taken from the population at
time T .

Question: Can we infer the growth rate of a tumor from genetic data?



Branch lengths in the coalescent tree
Consider the genealogical tree of a sample of n individuals.
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Let Lexn = total length of external branches (blue)
Let Linn = total length of internal branches (red and orange)
Let Lkn = total length of branches supporting k leaves

(k = 1: blue; k = 2: orange; k = 3: red)



The site frequency spectrum
Suppose mutations appear at rate ν along each lineage.
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Let Mk
n = number of mutations inherited by k sampled individuals.

The numbers (M1
n , . . . ,M

n−1
n ) are called the site frequency spectrum.

Example: M1
n = 3,M2

n = 1,M3
n = 2.

Note: conditional distribution of Mk
n given Lkn is Poisson(νLkn).



A star-shaped genealogy

A faster growth rate leads to a tree with longer external branches (blue) and
shorter internal branches (red).
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Slow growth Fast growth



Expected value of the site frequency spectrum

Theorem (Durrett, 2013): Fix 2 ≤ k ≤ n. Then as T →∞, we have

E [Mk
n ] ∼ nν

r
· 1

k(k − 1)
.

Similar calculations appeared in Bozic, Gerold, and Nowak (2016), and
Williams, Werner, Barnes, Graham, and Sottoriva (2016).

Gunnarsson, Leder, and Foo (2021) calculated the exact expected site frequency
spectrum when the sample consists of the entire population.



Calculating the expected site frequency spectrum
Consider a Yule process in which each individual gives birth at rate r .

Expected number of mutations while there are j individuals is (1/jr) · jν = ν/r .

The fraction of the population that inherits such a mutation has the
Beta(1, j − 1) distribution with density (j − 1)(1− x)j−2 on [0, 1].

The density of mutations with inherited by a fraction x of the population is

∞∑
j=2

ν

r
(j − 1)(1− x)j−2 =

ν

rx2
.

In a sample of size n, for 2 ≤ k ≤ n − 1, the expected number of mutations
affecting k individuals is therefore∫ 1

0

ν

rx2
·
(
n

k

)
xk(1− x)n−k dx =

nν

r
· 1

k(k − 1)
.



The Yule Process and the Geometric distribution
Let (X (t), t ≥ 0) be a Yule process started from X (0) = 1 in which each
individual gives birth at rate r . Then X (T ) ∼ Geometric(e−rT ).

T

0

We can construct a Yule process as follows:

1. Begin with one individual at time zero, draw a line to time T .

2. Search for branchpoints, starting at time T and working backwards.

3. When a branchpoint is found, draw a line from the branchpoint to time T .

4. Repeat until there is no branchpoint.

5. At each step, the probability that there is no branchpoint is e−rT .



The coalescent point process (CPP)
Goes back to Popovic (2004), Aldous and Popovic (2005).
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Let H1,H2, . . . be i.i.d. Exponential(r).

Draw a vertical line on the left of height T . Draw vertical lines of heights
H1,H2, . . . , then draw a horizontal dashed line to the left, stopping when it hits a
vertical line. Stop when we reach some Hi > T .



Generalizations and Consequences
Consider a branching process (X (t), t ≥ 0) in which:

I Individuals give birth at time t to one offspring at rate λ(t).
I An individual born at time t has probability q(t) of having a descendant

alive at time T .

Note that the death rate (but not the birth rate) may be age dependent.

Lambert and Stadler (2013): The reduced tree (subtree consisting of individuals
with a descendant alive at time T ), conditioned on survival until time T , is a
CPP with

P(Hi > t) = exp

(
−
∫ T

T−t
λ(s)q(s) ds

)
.

I We can construct the tree conditional on X (T ) = n by choosing
H∗1 , . . . ,H

∗
n−1 from the conditional distribution of Hi given Hi < T .

I Conditional on X (T ) = n, the n − 1 coalescence times are i.i.d.



Sampling each individual independently with probability y
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If we sample i and j but not i + 1, . . . j − 1, replace Hj by max{Hi+1, . . . ,Hj}.

Stadler (2009), Lambert and Stadler (2013): If each individual is sampled with
probability y , the genealogical tree is a CPP with Hy

i having the distribution of
max{H1, . . . ,HG}, where G ∼ Geometric(y).



A Lemma involving the Geometric distribution

Lemma (Lambert, 2018): Consider the following two sampling schemes:

I Let N ∼ Geometric(p). Conditional on N ≥ n, choose a random subset S of
n elements of {1, . . . ,N}. For i ∈ {1, . . . ,N}, let Ii = 1{i∈S}.

I Obtain the sample in two steps:

1. Choose Y to have density

fn(y) =
npyn−1

(1− (1− p)(1− y))n+1
, 0 < y < 1.

2. Let M ∼ Geometric(p), and let J1, J2, . . . , JM be i.i.d. Bernoulli(y).
Condition on J1 + · · ·+ JM = n.

Then the distributions of (N , (Ii)
N
i=1) and (M , (Ji)

M
i=1) are the same, with the

indicated conditioning.



Taking a sample of fixed size n
Consider a birth and death process (X (t), t ≥ 0) started with one individual at
time 0. Each individual has birth rate λ and death rate µ, with r = λ− µ.

Lambert (2018): The genealogical tree of a sample of size n at time T ,
conditioned on X (T ) ≥ n, is given by the following CPP:

1. Choose Y to have density on (0, 1) given by

fn(y) =
npyn−1

(1− (1− p)(1− y))n+1
, p =

re−rT

λ(1− e−rT ) + re−rT
.

2. Conditional on Y = y , let Hy
1 , . . . ,H

y
n−1 be i.i.d. with density on (0,T ):

fy (t) =
yλ + (r − yλ)e−rT

yλ(1− e−rT )
· yλr 2e−rt

(yλ + (r − yλ)e−rt)2
.

Harris, Johnston, and Roberts (2020) obtained the same formula for the joint
distribution of coalescence times using spines and a change of measure.



The large time and large sample limit
Let T →∞, and then let n→∞. We can approximate the genealogical tree of
a sample of size n at time T , conditioned on X (T ) ≥ n, by the following CPP:

1. Let W ∼ Exponential(1).
2. Let U1,U2, . . . ,Un−1 be i.i.d. logistic, with density on R given by

f (u) =
eu

(1 + eu)2
.

3. Let

Hi = T − 1

r

(
log(1/W ) + log n + Ui

)
.

We can bound the mean difference between original Hi and this approximation.

We expect X (t) ≈ Wert for large t, so the time it takes for the population to
reach size n is approximately 1

r
(log(1/W ) + log n).

Ignatieva, Hein, and Jenkins (2020) used a random time change to show that the
coalescence times are well approximated by i.i.d. logistic random variables.



Internal and External branch lengths from the CPP
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For 1 ≤ i ≤ n − 2, we have Lini ,n = (Hi − Hi+1)+ and Lexi ,n = min{Hi ,Hi+1}.

We have Linn =
n−2∑
i=0

Lini ,n and Lexn =
n−1∑
i=0

Lexi ,n.



Site Frequency Spectrum from the CPP
Expected site frequency spectrum worked out by Lambert (2009).

Further asymptotics by Champagnat and Lambert (2012, 2013), Champagnat
and Henry (2016), Delaporte, Achaz, and Lambert (2016).

Cancer applications: Dinh, Jaksik, Kimmel, Lambert, and Tavaré (2020).
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Lki ,n = (min{Hi ,Hi+k} −max{Hi+1, . . . ,Hi+k−1})+ for 1 ≤ i ≤ n − k − 1.



Approximate Moments for Internal Lengths
Recall that

Hi = T − 1

r

(
log(1/W ) + log n + Ui

)
.

For 1 ≤ i ≤ n − 2,

Lini ,n = (Hi − Hi+1)+ =
1

r
(Ui+1 − Ui)

+.

We have E [(Ui+1 − Ui)
+] = 1, so E [Linn ] ≈ n/r .

This agrees with Durrett’s (2013) formula because

n

r

∞∑
k=2

1

k(k − 1)
=

n

r
.

One can also estimate Var(Lini ,n) and Cov(Lini ,n, L
in
i+1,n) by making calculations

involving two or three logistic random variables. This leads to Var(Linn ) ≈ n/r 2.

Asymptotic normality follows from the m-dependent CLT.



A Limit Theorem for Internal Lengths

Consider a sequence of processes and write λn, µn, rn, Tn.

Theorem: Suppose
lim
n→∞

ne−rnTn = 0. (1)

Then as n→∞,
rn
n
Linn →p 1.

If the stronger condition

lim
n→∞

n3/2(log n)e−rnTn = 0 (2)

holds, then as n→∞,

rn√
n

(
Linn −

n

rn

)
⇒ N(0, 1).



A Limit Theorem for External Lengths

Recall that

Hi = Tn −
1

rn

(
log(1/W ) + log n + Ui

)
.

We have Lexi ,n = min{Hi ,Hi+1} and E [max{Ui ,Ui+1}] = 1.

Theorem: Suppose (1) holds. Let W have an Exponential(1) distribution. Then
as n→∞,

rn
n
Lexn −

(
rnTn − log n − 1

)
⇒ logW .

Note: The internal and external branch lengths are asymptotically independent.



Approximate mean of site frequency spectrum
Recall that for 1 ≤ i ≤ n − k − 1,

Lki ,n = (min{Hi ,Hi+k} −max{Hi+1, . . . ,Hi+k−1})+

=
1

r
(min{Ui+1, . . . ,Ui+k−1} −max{Ui ,Ui+k})+.

The expectation of this expression is

1

r

∫ ∞
−∞

P(Ui ,Ui+k < x < Ui+1, . . . ,Ui+k−1) dx

=
1

r

∫ ∞
−∞

(
ex

1 + ex

)2(
1

1 + ex

)k−1

dx =
1

rk(k − 1)
.

which agrees with Durrett’s (2013) formula.

The covariance computation is more complicated.
Asymptotic normality follows from the m-dependent CLT.



Asymptotics for the site frequency spectrum

Theorem: Suppose (1) holds. Fix k ≥ 2. Then as n→∞,

rn
n
Lkn →p

1

k(k − 1)
.

Theorem: Suppose (2) holds. Fix K ≥ 2. For k = 2, 3, . . . ,K , let

µk =
n

rnk(k − 1)
.

As n→∞,
rn√
n

(
L2n − µ2, . . . , L

K
n − µK

)
⇒ N(0,V).

A complicated but explicit formula can be obtained for the covariances Vk,`.



The critical case

Suppose λ = µ = 1. Let N(t) denote the size of the population at time t.

Theorem: Suppose

lim
n→∞

n

Tn
= 0.

Fix K ≥ 2. For k = 2, 3, . . . ,K , let µk = 1/k . As n→∞,√
n

log n

( L1n
N(Tn)

− µ1, . . . ,
LKn

N(Tn)
− µK

)
⇒ N(0, I).

Dahmer and Kersting (2015) proved a very similar result for Kingman’s
coalescent:

I Critical branching processes converge to the Feller diffusion.

I Genealogy of Feller diffusion is a time change of Kingman’s coalescent
(Perkins, 1992; Donnelly and Kurtz, 1999).



Site frequency spectrum in real data sets
We have data on 42 clones (20 malignant) from four papers on blood cancer:
Fabre et al (2022), Williams et al (2022), Van Egeren et al (2021),
Mitchell et al (2022).

We estimated Lkn/L
in
n for the 42 data sets, compared to 1/(k(k − 1)).

k Observed Predicted
2 .472 .500
3 .173 .167
4 .081 .083
5 .063 .050
6 .046 .033
7 .034 .024
8 .020 .018
9 .015 .014
10+ .102 .110



Methods for estimating the growth rate
1. Internal Lengths: Recall that E [Linn ] ≈ n/r

r̂ =
n

Linn
, 95% CI:

[
r̂

(
1− z∗√

n

)
, r̂

(
1 +

z∗√
n

)]
.

2. Maximum Likelihood: Coalescence times can be approximated by

Hi = a + bUi , a = T − 1

r

(
log(1/W ) + log n

)
, b =

1

r
.

We can estimate the scale parameter b of a logistic distribution by
maximum likelihood and obtain asymptotic confidence intervals.

3. Phylofit: Method used by Williams et al (2022) based on MCMC. Assumes
that population size evolves deterministically, lineages merge at rate 1/N(t).

4. Birth-Death MCMC: Method used by Stadler (2009). Assumes each
individual in a birth and death process is sampled with probability y .



Simulation Results

n = 100, T = 40, r = 0.5, 500 runs

Mean RMSE CI Coverage
Internal Lengths 0.508 0.102 0.948
Maximum Likelihood 0.521 0.093 0.948
Phylofit 0.514 0.101 0.798
Birth-Death MCMC 0.508 0.083 0.948

I Birth-death MCMC performs slightly better than our methods, but takes
much longer to run.

I Phylofit confidence intervals are too narrow (observed for similar methods by
Boskova, Bonhoeffer, and Stadler, 2014).

I All methods overestimate r when n is small.

I Our methods perform can perform poorly when r is small, but this is not a
problem if Lexn /L

in
n > 3, which was true for all 42 clones.



Application to blood cancer data

The Internal Lengths and Maximum Likelihood methods perform comparably to
Phylofit on data from 20 malignant clones.


