MATH 142A HOMEWORK 7

Important: Please answer each of these questions on a separate sheet(s) of paper. You will then upload your final solutions GradeScope as explained on the class webpage.

Problem # 1

Let \(f : [a, b] \to [c, d] \) be a continuous function. Suppose that \(g : [a, b] \to \mathbb{R} \) is another continuous function such that there exists \(x_1, x_2 \in [a, b] \) with the property \(g(x_1) = c \) and \(g(x_2) = d \). Prove that there exists some \(x_0 \in [a, b] \) with \(f(x_0) = g(x_0) \).

Problem # 2

Let \(f : [a, b] \to [a, b] \) be a continuous function with \(|f(x) - f(y)| < \gamma |x - y| \) for all \(x \neq y \in [a, b] \) and some \(0 \leq \gamma < 1 \). Prove that there exists a unique \(x_0 \in [a, b] \) with \(f(x_0) = x_0 \), and moreover that the iterated composition \(f^n = f \circ f \circ \ldots \circ f \) (\(n \) times) is such that \(x_n = f^n(x) \to x_0 \) for all \(x \in [a, b] \).

Problem # 3

Consider the following function \(f : \mathbb{R} \to \mathbb{R} \):

\[
 f(x) = \begin{cases}
 1, & \text{if } x = 0; \\
 \frac{1}{n}, & \text{if } x = \frac{m}{n} \text{ where } m \in \mathbb{Z}, n \in \mathbb{N} \text{ and } \gcd(n, m) = 1; \\
 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}.
\end{cases}
\]

Show that \(f \) is continuous at all \(x \in \mathbb{R} \setminus \mathbb{Q} \), and discontinuous at all \(x \in \mathbb{Q} \).

Problem # 4

Let \(p(x) : \mathbb{R} \to \mathbb{R} \) be a monic odd degree polynomial, i.e. \(p(x) = \sum_{k=0}^{d} a_k x^k \) where \(d \) is odd and \(a_d = 1 \).

a) Suppose there exists \(x_1 < x_2 \) with \(p(x_2) < 0 < p(x_1) \). Show that \(p(x) \) has at least three distinct real roots.

b) Show that the polynomial \(p(x) = x^3 + 4x^2 + x - 1 \) factors with all real roots.