FACT SHEET FOR 20E FINAL

Here are the combined fact sheets along with a few minor corrections.

1. FROM CHAPTER 2

• The derivative matrix of the vector-valued function \(\Phi: \mathbb{R}^n \to \mathbb{R}^k \) is the \(k \times n \) matrix:
 \[
 D\Phi|_{x=x_0} = (a_{ij}) = (\partial_j f_i)|_{x=x_0},
 \]
 where \(x_0 \in \mathbb{R}^n \) and the \(f_i \) are the component functions of \(\Phi = (f_1, \ldots, f_k) \).

• The general chain rule for the composition of two vector valued functions is (just matrix multiplication):
 \[
 D(\Psi \circ \Phi)|_{x=x_0} = D\Psi|_{\Phi(x_0)} \cdot D\Phi|_{x=x_0}.
 \]

• The linearization of a vector valued function \(\Phi \) at \(x_0 \) is:
 \[
 \Phi(x) \approx \Phi(x_0) + D\Phi|_{x_0} \cdot (x - x_0).
 \]
 In general the error here is on the order of \(\| x - x_0 \|_2 \). Note also that the right hand side of the above formula is exactly the expression for the tangent plane of \(\Phi \) at \(x_0 \).

2. FROM CHAPTER 3

• The second order Taylor expansion for a scalar function \(f(x_1, \ldots, x_n) \) of \(n \) variables at the point \((x_1^0, \ldots, x_n^0) \in \mathbb{R}^n \) is:
 \[
 f(x_1, \ldots, x_n) \approx f(x_1^0, \ldots, x_n^0) + \sum_{i=1}^{n} \partial_i f(x_1^0, \ldots, x_n^0)(x_i - x_i^0) + \frac{1}{2} \sum_{i,j=1}^{n} \partial_i \partial_j f(x_1^0, \ldots, x_n^0)(x_i - x_i^0)(x_j - x_j^0).
 \]
 In general the error here is on the order of \(\| (x_1, \ldots, x_n) - (x_1^0, \ldots, x_n^0) \|_3 \), i.e. the error is at most of cubic order in terms of the distance between \((x_1, \ldots, x_n) \) and \((x_1^0, \ldots, x_n^0) \).

3. FROM CHAPTER 4

• The divergence of a vector field is:
 \[
 \nabla \cdot \vec{F} = \partial_{x_1} F_1 + \partial_{x_2} F_2 + \ldots + \partial_{x_n} F_n.
 \]
 Here \(F_i \) are the components of \(\vec{F} \). The divergence measures how much the flow curves of \(\vec{F} \) are expanding or contracting a small cube of fluid.

• The curl of a 3D vector field is:
 \[
 \nabla \times \vec{F} = \begin{vmatrix}
 \partial_x & \partial_y & \partial_z \\
 F_1 & F_2 & F_3
 \end{vmatrix} = (\partial_y F_3 - \partial_z F_2, \partial_z F_1 - \partial_x F_3, \partial_x F_2 - \partial_y F_1).
 \]
 The quantity \(\vec{\omega} \cdot (\nabla \times \vec{F}) \) measures how quickly a fluid with velocity \(\vec{F} \) will rotate a small paddle wheel perpendicular to the \(\vec{\omega} \) (unit vector) direction, where the sign depends on the “right hand rule”. Since the measurement is taken with the ratio of length to area, the quantity \(\vec{\omega} \cdot (\nabla \times \vec{F}) \) is actually \(\text{twice} \) the angular velocity of this wheel as it rotates with the fluid.

• The curl of a vector field \(\vec{F} \) also indicates if \(\vec{F} = \nabla f \) for some scalar function \(f \). One has \(\nabla \times \vec{F} = \vec{0} \) iff such an \(f \) exists.
4. From Chapter 6

- If \((x, y) = \Phi(u, v)\) is a one to one and onto map between two domains \(D^*\) and \(D = \Phi(D^*)\) in \(\mathbb{R}^2\), then the change of variables formula for integrals is:

\[
\int_D^* f(\Phi(u, v)) \left| \frac{\partial\Phi}{\partial(u, v)} \right| \, du \, dv = \int_D f(x, y) \, dx \, dy .
\]

Here \(\left| \frac{\partial\Phi}{\partial(u, v)} \right|\) is the absolute value of the determinant of the matrix of first partial derivatives:

\[
\left| \frac{\partial\Phi}{\partial(u, v)} \right| = \left| \partial_u x\partial_v y - \partial_u y\partial_v x \right| .
\]

We are writing \(\Phi(u, v) = (x(u, v), y(u, v))\).

- There are two very important particular cases of the above formula. The first is polar coordinates:

\[
x = r \cos(\theta) , \quad y = r \sin(\theta) ,
\]

where \(\frac{\partial(x, y)}{\partial(r, \theta)} = r \, dr \, d\theta\). For example:

\[
\int_{x^2 + y^2 \leq R^2} f(x, y) \, dx \, dy = \int_0^{2\pi} \int_0^R f(r \cos(\theta), r \sin(\theta)) \, r \, dr \, d\theta .
\]

- The other main important case is the analog of the above formula in three dimensions:

\[
x = \rho \sin(\phi) \cos(\theta) , \quad y = \rho \sin(\phi) \sin(\theta) , \quad z = \rho \cos(\phi) ,
\]

where \(\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)} = \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta\). For example:

\[
\int_{x^2 + y^2 + z^2 \leq R^2} f(x, y, z) \, dx \, dy \, dz =
\int_0^{2\pi} \int_0^\pi \int_0^R f(\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi)) \, \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta .
\]

5. From Chapter 7

- A path integral is:

\[
\int_{c} f ds = \int_{a}^{b} f(x(t), y(t)) \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} \, dt , \quad \text{where } \vec{c}(t) = (x(t), y(t)) ,
\]

in 2D, and:

\[
\int_{c} f ds = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\dot{x}^2(t) + \dot{y}^2(t) + \dot{z}^2(t)} \, dt , \quad \text{where } \vec{c}(t) = (x(t), y(t), z(t)) ,
\]

in 3D. Here \(f\) is a scalar function, and \(\vec{c}(t)\) is a curve in the plane or space.

- A line integral is:

\[
\int_{c} \vec{F} \cdot ds = \int_{a}^{b} F(\vec{c}(t)) \cdot \vec{c}'(t) \, dt ,
\]

where \(\vec{F}\) is a vector field 2D or 3D and \(\vec{c}(t)\) is a curve in 2D or 3D (same dimension for both).
• A **parametrized surface** in 3D is given by a one to one and onto vector valued function \(\Phi : D \to \mathbb{R}^3 \) where \(D \subseteq \mathbb{R}^2 \). Here \(\Phi(u, v) = (x(u, v), y(u, v), z(u, v)) \). The vectors:

\[
\vec{T}_u = \frac{\partial \Phi}{\partial u}, \quad \vec{T}_v = \frac{\partial \Phi}{\partial v}, \quad \vec{n} = \vec{T}_u \times \vec{T}_v,
\]

are (in order) the tangent vectors to the surface in the directions of increasing \(u \) and \(v \), and the
normal vector to the surface. Here \(\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1) \) is the vector cross product. We assume that \(\vec{n} \neq \vec{0} \), which is the definition of a **regular surface**.

One can use \(\vec{n} \) to write the tangent plane to the surface at \((x_0, y_0, z_0) = \Phi(u_0, v_0) \) via:

\[
\vec{n} \cdot (x - x_0, y - y_0, z - z_0) = 0,
\]

assuming the surface is regular at \((x_0, y_0, z_0) \).

• A **surface area** of a parametrized surface \(\Phi : D \to \mathbb{R}^3 \) is given by:

\[
\text{Area} = \iint_D \| \vec{\Phi}_u \times \vec{\Phi}_v \| \, dudv.
\]

In the special case where the surface is the graph of a function \(z = f(x, y) \) this formula becomes:

\[
\iint_D \sqrt{1 + f_x^2 + f_y^2} \, dxdy.
\]

• A **surface integral** is:

\[
\iint_S g \, dA,
\]

where \(S \) is some portion of a surface in 3D, \(g = g(x, y, z) \) is a scalar function, and \(dA \) is the surface area element.

There are two concrete cases where we have computed \(dA \). The first is where \(S \) is given as the graph of a function \(z = f(x, y) \) over a domain \(D \subseteq \mathbb{R}^2 \). Then the surface integral becomes:

\[
\iint_S g \, dA = \iint_D g(x, y, f(x, y)) \sqrt{1 + f_x^2 + f_y^2} \, dxdy.
\]

The other case is when \(S \) is parameterized by the vector valued function \((x, y, z) = \Phi(u, v) \), where \((u, v) \in D \subseteq \mathbb{R}^2 \). Then the integral becomes:

\[
\iint_S g \, dA = \iint_D g(\Phi(u, v)) \| \vec{\Phi}_u \times \vec{\Phi}_v \| \, dudv.
\]

• A **flux integral** is:

\[
\iint_S \vec{F} \cdot \vec{n} \, dA,
\]

where \(S \) is some portion of a surface in 3D, \(\vec{n} \) is a unit normal along \(S \), \(\vec{F} \) is a vector field, and \(dA \) is the surface area element. Note that the direction of \(\vec{n} \) determines the sign of this integral.

There are two concrete cases where we have computed this. The first is where \(S \) is given as the graph of a function \(z = f(x, y) \) over \(D \subseteq \mathbb{R}^2 \). Then the **outward flux integral** (i.e. \(\vec{n} \) has a positive \(z \) component) becomes:

\[
\iint_S \vec{F} \cdot \vec{n} \, dA = \iint_D \vec{F}(x, y, f(x, y)) \cdot (-f_x, -f_y, 1) \, dxdy.
\]
The other is when S is parameterized by the function $(x, y, z) = \Phi(u, v)$, for $(u, v) \in D \subseteq \mathbb{R}^2$. Then the flux integral becomes:

$$\iint_S \vec{F} \cdot \hat{n} \ dA = \iint_D \vec{F}(\Phi(u, v)) \cdot (\Phi_u \times \Phi_v) \ dudv .$$

In this case one needs to pay attention to the direction of the normal vector $\hat{n} = \frac{\Phi_u \times \Phi_v}{\| \Phi_u \times \Phi_v \|}$.

6. From Chapter 8

- The Green’s Theorem in 2D says that:

$$\int_{\partial D} \vec{F} \cdot ds = \iint_D \left(\partial_x F_2 - \partial_y F_1 \right) \ dA , \quad \text{where} \quad \vec{F} = (F_1, F_2) ,$$

and where ∂D is the closed curve that bounds the domain $D \subseteq \mathbb{R}^2$. Here the orientation of ∂D in the path integral is counter-clockwise.

- The Stokes’ Theorem in 3D says that:

$$\int_{\partial S} \vec{F} \cdot ds = \iint_S (\nabla \times \vec{F}) \cdot \hat{n} \ dA ,$$

where ∂S is the boundary curve of the surface $S \subseteq \mathbb{R}^3$, and the orientation of ∂S in the path integral as well as the direction of \hat{n} obeys the “right-hand-rule”. This should be understood as a generalization of the Green’s theorem.

Notice that Stokes’ Theorem also says:

$$\iint_{S_1} (\nabla \times \vec{F}) \cdot \hat{n} \ dA = \iint_{S_2} (\nabla \times \vec{F}) \cdot \hat{n} \ dA ,$$

as long as S_1 and S_2 are any two surfaces with the same boundary curve and \hat{n} has a similar orientation in both cases.

- The Divergence Theorem in 3D says that:

$$\iint_S \vec{F} \cdot \hat{n} \ dA = \iiint_R \nabla \cdot \vec{F} \ dV ,$$

where $S = \partial R$ is the closed surface that bounds the region $R \subseteq \mathbb{R}^3$. Here \hat{n} points to the exterior of R.

4