Topics - Picard & Existence for ODE, Gronwall & Stability, continuation principle, conserved quantities & global existence.

I. Basic ODE & Picard Theory

A. ODE and IVP

Let \(\Omega \subseteq \mathbb{R}^d \) be a domain, and \(F : \Omega \rightarrow \mathbb{R}^d \) be a function, \(F = (F_1, \ldots, F_d) \). Then

we want to solve \(\dot{x} = F(x), \quad x(0) = x_0 \).

B. Examples

1. Let \(\mathbb{R} \rightarrow \mathbb{R} \), solve \(\dot{x} = -x^2 \) (Van der Pol's Eq., \(s = e^{\alpha t} \))

Thus the equation becomes \(\frac{d^2 x}{dt^2} + (\alpha^2 - x^2) = 0 \).

If \(F = \frac{1}{2} m \dot{x}^2 + V(x) \), then \(\frac{d}{dt} E = 0 \) for a solution.

Example 2: Let \(G : \mathbb{R}^2 \rightarrow \mathbb{R} \), solve \(\dot{x} = -V(x) \). Then \(\int (\dot{x}^2 + V(x)) \, dt \)

Thus to a critical point of \(G \).

C. Picard Theory

Then let \(F : \Omega \rightarrow \mathbb{R}^d \) be \(C^1 \) (i.e., \(\frac{\partial F}{\partial x} \)) (\(C_k \) all \(\Omega \)), and for each \(x_0 \in \Omega \)

on \(B(0,\alpha) \) such that \(x = F(x) \) has a solution for \(\| x_0 \| < \alpha \). This solution is unique.

Proof: We only care about a constant end if \(x \in B(0,\alpha) \), so WLOG assume \(F \) is globally defined and \(\| F \|_{\text{lip}} = M \).

First set up an integral equation \(x(t) = x_0 + \int_0^t F(x(s)) \, ds \), where \(\frac{d}{dt} [x(s)] = F(x(s)) \).

is defined for \(s \in [0, t] \), with \(s \in (y(x), t) \), \(h(t) = \int_0^t F(x(s)) \, ds \).

Thus \(\| s \|_{\text{lip}} \leq M \tau \| x_0 \|_{\text{lip}} \). \(\| x \|_{\text{lip}} \leq M \tau \| x_0 \|_{\text{lip}} \).

Remark 1: This also applies to \(\dot{x} = F(t, x) \) by setting \(y(t) = (1, x(t)), \quad G(y) = (1, F(t, x)) \), \(\text{then } \dot{y} = F(y), \quad \text{y}(0) = (1, x) \).

Thus the original.

Remark 2: \(\dot{y} = F(y), \quad y(0) = (1, x) \) has two solutions, \(x(0), \quad \frac{1}{t} \log \| y(t) \| \).
Remark: In general, the solution is only loud even if f is g-globally loud. For example, $x(t) = x_0 e^{t/2}$.

II. Stability

Let $\mathcal{F}(x) = f(x) + g(x)$, $\mathcal{F}(x_0) = x_0$. Call the "flow map." We'd like to understand the continuity properties of this map for fixed t.

A. Gronwall's Estimate

Then: Let $\alpha(t)$ be a solution such that $\alpha_0 = 0$, $t_0 = 0$, and $\alpha(t) \leq A + \int_{t_0}^{t} g(s) ds$ for some $A > 0$.

Then $\alpha(t) \leq A e^{\int_{t_0}^{t} g(s) ds}$, $t_0 \leq t$.

B. Stability Estimate

We now apply this to $x(t) = x_0 e^{t/2}$ is Lipschitz for fixed t.

Then: Let $F: \mathbb{R}^d \to \mathbb{R}^d$ be a (locally) Lipschitz vector field with $\|F(\mathcal{C}(x))\| = M$ some $k \in \Omega$.

Then for $x, y \in \mathcal{C}(x)$, $\|F(x) - F(y)\| \leq M \|x - y\|$ for all $x, y, t_0 \leq t$.

III. Conservation Principle & Conserved quantities

A. General Conservation Principle

Then: Let $F: \mathbb{R}^d \to \mathbb{R}^d$ be locally Lipschitz, and $x(0) = x_0$. Then if $\mathcal{I}(x_0(t))$ is the maximum interval of existence of $x(t)$, $x(t) = x_0$, we must have at least one of:

1. $t \geq 0$

2. $t < \infty$ and $\lim_{t \to \infty} x(t) = x_0$.
3. If \(T \) is a monotonous function, and \(\text{dist}(x, y) = 0 \), for some sequence of times, then there exists a sequence of points in \(T \) with \(\text{dist}(x, y) = 0 \).

For some \(x \) and \(y \), and some \(t \), the function \(T \) is continuous.

3. The use of hankel quantities

Let \(F : \mathbb{R}^d \rightarrow \mathbb{R} \) be a \(C^1 \) function such that \(F(x) \) is finite.

Then \(x(1) \)-ball is the smallest \(x \) such that \(F(x) \) is finite.

If \(x \) is a \(C^1 \) function, then \(x(1) \)-ball is the smallest \(x \) such that \(F(x) \) is finite.

Let \(x \) be a ball in \(\mathbb{R}^d \). Then \(x(1) \)-ball is the smallest \(x \) such that \(F(x) \) is finite.

Now assume \(x(1) \)-ball is finite. Then \(x(1) \)-ball is the smallest \(x \) such that \(F(x) \) is finite.

If \(x(1) \)-ball did not exist, then \(x(1) \)-ball would not be finite, so \(F(x(1)) = \infty \).

Theorem: If \(x(1) \)-ball is finite, then \(x(1) \)-ball is the smallest \(x \) such that \(F(x) \) is finite.

Finally, \(x(1) \)-ball would not be finite, so \(F(x(1)) = \infty \).

Theorem: If \(x(1) \)-ball is finite, then \(x(1) \)-ball is the smallest \(x \) such that \(F(x) \) is finite.

Exercise