Major Index Asymptotics
AMS Special Session on Combinatorial Representation Theory,
UC Riverside, November 4th-5th, 2017

Josh Swanson
University of Washington

based partly on joint work with
Sara Billey and Matjaž Konvalinka

arXiv:1701.04963
Question (Sundaram)

Fix an S_n-conjugacy class μ. Let S_n act by conjugation on μ \mathbb{C}-linearly. For which μ does every S_n-irreducible appear in this representation?
Question (Sundaram)

Fix an S_n-conjugacy class μ. Let S_n act by conjugation on μ \(\mathbb{C}\)-linearly. For which μ does every S_n-irreducible appear in this representation?

- Sundaram gave a conjectural answer
Global conjugacy classes

Question (Sundaram)

Fix an S_n-conjugacy class μ. Let S_n act by conjugation on μ \mathbb{C}-linearly. For which μ does every S_n-irreducible appear in this representation?

- Sundaram gave a conjectural answer (for $n \neq 4, 8$, μ must have at least two parts, with all parts odd and distinct)
Global conjugacy classes

Question (Sundaram)

Fix an S_n-conjugacy class μ. Let S_n act by conjugation on μ \mathbb{C}-linearly. For which μ does every S_n-irreducible appear in this representation?

- Sundaram gave a conjectural answer (for $n \neq 4, 8$, μ must have at least two parts, with all parts odd and distinct) subject to a classification of which irreducibles appear when $\mu = (n)$
Global conjugacy classes

Question (Sundaram)

Fix an S_n-conjugacy class μ. Let S_n act by conjugation on μ \mathbb{C}-linearly. For which μ does every S_n-irreducible appear in this representation?

- Sundaram gave a conjectural answer (for $n \neq 4, 8$, μ must have at least two parts, with all parts odd and distinct) subject to a classification of which irreducibles appear when $\mu = (n)$ (all χ^λ except $\lambda \in \{(n-1, 1), (2, 1^{n-2})\}$ when n is odd and $\lambda \in \{(n-1, 1), (1^n)\}$ when n is even)
Global conjugacy classes

Question (Sundaram)

Fix an S_n-conjugacy class μ. Let S_n act by conjugation on μ \(\mathbb{C} \)-linearly. For which μ does every S_n-irreducible appear in this representation?

- Sundaram gave a conjectural answer (for $n \neq 4, 8$, μ must have at least two parts, with all parts odd and distinct) subject to a classification of which irreducibles appear when $\mu = (n)$ (all χ^λ except $\lambda \in \{(n - 1, 1), (2, 1^{n-2})\}$ when n is odd and $\lambda \in \{(n - 1, 1), (1^n)\}$ when n is even)

- When $\mu = (n)$, this representation is $1^{\uparrow S_n}_{C_n}$ where $C_n := \langle (\sigma_n) \rangle$ with $\sigma_n := (1 \ 2 \ \cdots \ n)$
Combinatorial representation theory

Define $\chi^r : C_n \to \mathbb{C}^\times$ by $\chi^r(\sigma^k_n) := \omega_n^{kr}$
Combinatorial representation theory

- Define $\chi^r : C_n \to \mathbb{C}^\times$ by $\chi^r(\sigma_n^k) := \omega_n^{kr}$
- Set

$$a_{\lambda,r} := \langle \chi^r_{\uparrow S_n}^{C_n}, \chi^\lambda \rangle$$
Combinatorial representation theory

- Define $\chi^r : C_n \rightarrow \mathbb{C}^\times$ by $\chi^r(\sigma^k_n) := \omega_n^{kr}$
- Set

$$a_{\lambda, r} := \langle \chi^r \uparrow_{S_n}^{C_n}, \chi^\lambda \rangle$$

Theorem (Kraskiewicz–Weyman)

Let $\lambda \vdash n$. Then

$$a_{\lambda, r} = \# \{ T \in SYT(\lambda) : \text{maj}(T) \equiv_n r \}.$$
Combinatorial representation theory

Define $\chi^r : C_n \to \mathbb{C}^\times$ by $\chi^r(\sigma_n^k) := \omega_n^{kr}$

Set

$$a_{\lambda, r} := \langle \chi^r|_{\mathcal{C}_n}, \chi^\lambda \rangle$$

Theorem (Kraskiewicz–Weyman)

Let $\lambda \vdash n$. Then

$$a_{\lambda, r} = \# \{ T \in \text{SYT}(\lambda) : \text{maj}(T) \equiv_n r \}.$$

Related to work of Thrall, Klyachko, Stembridge, Lusztig, Stanley, ...
Major index on standard tableaux

- $\text{SYT}(\lambda/\nu) := \{\text{standard Young tableaux of shape } \lambda/\nu\}$
Major index on standard tableaux

- \(\text{SYT}(\lambda/\nu) := \{ \text{standard Young tableaux of shape } \lambda/\nu \} \)
- For \(T \in \text{SYT}(\lambda/\nu) \), set
 \[
 \text{Des}(T) := \{ i : i + 1 \text{ appears in a lower row than } i \text{ in } T \}
 \]

Example: \(\lambda/\nu = (4,3,2)/(1) \), \(T = \begin{array}{ccc}
1 & 6 & 7 \\
2 & 4 & 8 \\
3 & 5 & \end{array} \) has \(\text{Des}(T) = \{ 1, 2, 4, 7 \} \) and \(\text{maj}(T) = 1 + 2 + 4 + 7 = 14 \)
Major index on standard tableaux

- \(\text{SYT}(\lambda/\nu) := \{\text{standard Young tableaux of shape } \lambda/\nu\} \)
- For \(T \in \text{SYT}(\lambda/\nu) \), set

\[
\text{Des}(T) := \{i : i + 1 \text{ appears in a lower row than } i \text{ in } T\}
\]

\[
\text{maj}(T) := \sum_{i \in \text{Des}(T)} i
\]

Example: \(\lambda/\nu = (4,3,2)/(1) \), \(T = \begin{array}{cccc}
1 & 6 & 7 & 2 \\
4 & 8 & 3 & 5
\end{array} \) has \(\text{Des}(T) = \{1, 2, 4, 7\} \) and \(\text{maj}(T) = 1 + 2 + 4 + 7 = 14 \)
Major index on standard tableaux

- \(\text{SYT}(\lambda/\nu) := \{ \text{standard Young tableaux of shape } \lambda/\nu \} \)
- For \(T \in \text{SYT}(\lambda/\nu) \), set
 \[
 \text{Des}(T) := \{ i : i + 1 \text{ appears in a lower row than } i \text{ in } T \}
 \]
 \[
 \text{maj}(T) := \sum_{i \in \text{Des}(T)} i
 \]
- Example: \(\lambda/\nu = (4, 3, 2)/(1) \),
 \[
 T = \begin{array}{c c c}
 1 & 6 & 7 \\
 2 & 4 & 8 \\
 3 & 5 &
 \end{array}
 \]
 has \(\text{Des}(T) = \{ 1, 2, 4, 7 \} \) and \(\text{maj}(T) = 1 + 2 + 4 + 7 = 14 \)
Major index on standard tableaux

- SYT(λ/ν) := \{standard Young tableaux of shape λ/ν\}
- For $T \in$ SYT(λ/ν), set

 \[
 \text{Des}(T) := \{i : i + 1 \text{ appears in a lower row than } i \text{ in } T\}
 \]

 \[
 \text{maj}(T) := \sum_{i \in \text{Des}(T)} i
 \]

- Example: $\lambda/\nu = (4, 3, 2)/(1)$,

 \[
 T = \begin{array}{ccc}
 1 & 6 & 7 \\
 2 & 4 & 8 \\
 3 & 5 \\
 \end{array}
 \]
Major index on standard tableaux

- \(\text{SYT}(\lambda/\nu) := \{ \text{standard Young tableaux of shape } \lambda/\nu \} \)
- For \(T \in \text{SYT}(\lambda/\nu) \), set

\[
\text{Des}(T) := \{ i : i + 1 \text{ appears in a lower row than } i \text{ in } T \}
\]

\[
\text{maj}(T) := \sum_{i \in \text{Des}(T)} i
\]

- Example: \(\lambda/\nu = (4, 3, 2)/(1), \)

\[
T = \begin{array}{ccc}
1 & 6 & 7 \\
2 & 4 & 8 \\
3 & 5
\end{array}
\]
Major index on standard tableaux

- \(\text{SYT}(\lambda/\nu) := \{ \text{standard Young tableaux of shape } \lambda/\nu \} \)
- For \(T \in \text{SYT}(\lambda/\nu) \), set

\[
\text{Des}(T) := \{ i : i + 1 \text{ appears in a lower row than } i \text{ in } T \}
\]

\[
\text{maj}(T) := \sum_{i \in \text{Des}(T)} i
\]

- Example: \(\lambda/\nu = (4, 3, 2)/(1) \),

\[
T = \begin{array}{ccc}
1 & 6 & 7 \\
2 & 4 & 8 \\
3 & 5
\end{array}
\]

has \(\text{Des}(T) = \{1, 2, 4, 7\} \) and \(\text{maj}(T) = 1 + 2 + 4 + 7 = 14 \)
Restatement of earlier conjecture:

Conjecture (Sundaram)

Let $\lambda \vdash n > 1$. Then $a_{\lambda,0} = 0$ if and only if

- $\lambda = (n - 1, 1)$, or
- $\lambda = (2, 1^{n-2})$ if n is odd, or
- $\lambda = (1^n)$ if n is even
Restatement of earlier conjecture:

Conjecture (Sundaram)

Let $\lambda \vdash n > 1$. Then $a_{\lambda,0} = 0$ if and only if

- $\lambda = (n - 1, 1)$, or
- $\lambda = (2, 1^{n-2})$ if n is odd, or
- $\lambda = (1^n)$ if n is even

Related earlier work:

Theorem (Klyachko)

Let $\lambda \vdash n > 1$. Then $a_{\lambda,1} = 0$ if and only if

- $\lambda = (2, 2)$, or $\lambda = (2, 2, 2)$, or
- $\lambda = (n)$, or
- $\lambda = (1^n)$ when $n > 2$
Estimating $a_{\lambda,r}$

Theorem (S.)

For all $\lambda \vdash n \geq 1$ *and all* r,

\[
\left| \frac{a_{\lambda,r}}{f^\lambda} - \frac{1}{n} \right| \leq \frac{2n^{3/2}}{\sqrt{f^\lambda}}
\]

Proof uses Foulkes' formula, Ramanujan sums, $\chi_{\lambda}(\ell n/\ell)$, the Fomin–Lulov bound, Stirling's approximation.
Estimating $a_{\lambda,r}$

Theorem (S.)

For all $\lambda \vdash n \geq 1$ and all r,

$$\left| \frac{a_{\lambda,r}}{f^\lambda} - \frac{1}{n} \right| \leq \frac{2n^{3/2}}{\sqrt{f^\lambda}}$$

- Proof uses Foulkes’ formula, Ramanujan sums, $\chi^\lambda((\ell n/\ell))$, the Fomin–Lulov bound, Stirling’s approximation
Estimating $a_{\lambda,r}$

Theorem (S.)

For all $\lambda \vdash n \geq 1$ and all r,

$$\left| \frac{a_{\lambda,r}}{f^\lambda} - \frac{1}{n} \right| \leq \frac{2n^{3/2}}{\sqrt{f^\lambda}}$$

- Proof uses Foulkes’ formula, Ramanujan sums, $\chi^\lambda((\ell n/\ell))$, the Fomin–Lulov bound, Stirling’s approximation

Theorem (S.)

Let $\lambda \vdash n \geq 81$ with $\lambda_1, \lambda'_1 < n - 7$. Then $f^\lambda \geq n^5$ and

$$\left| \frac{a_{\lambda,r}}{f^\lambda} - \frac{1}{n} \right| < \frac{1}{n^2}.$$
Estimating $a_{\lambda,r}$

Theorem (S.)

For all $\lambda \vdash n \geq 1$ and all r,

$$\left| \frac{a_{\lambda,r}}{f^\lambda} - \frac{1}{n} \right| \leq \frac{2n^{3/2}}{\sqrt{f^\lambda}}$$

- Proof uses Foulkes’ formula, Ramanujan sums, $\chi^\lambda((\ell n/\ell))$, the Fomin–Lulov bound, Stirling’s approximation

Theorem (S.)

Let $\lambda \vdash n \geq 81$ with $\lambda_1, \lambda'_1 < n - 7$. Then $f^\lambda \geq n^5$ and

$$\left| \frac{a_{\lambda,r}}{f^\lambda} - \frac{1}{n} \right| < \frac{1}{n^2}.$$

- Proof uses “opposite hook products” arising independently in recent work of Morales–Pak–Panova
Results for $a_{\lambda,r}$

Corollary (S.)

Let $\lambda \vdash n > 1$. Then $a_{\lambda,r} = 0$ if and only if

- $\lambda = (2,2)$, $r = 1,3$; or $\lambda = (2,2,2)$, $r = 1,5$; or $\lambda = (3,3)$, $r = 2,4$; or
- $\lambda = (n-1,1)$ and $r = 0$; or
- $\lambda = (2,1^{n-2})$, $r = \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$; or
- $\lambda = (n)$, $r \in \{1, \ldots, n-1\}$; or
- $\lambda = (1^n)$, $r \in \begin{cases} \{1, \ldots, n-1\} & \text{if } n \text{ is odd} \\ \{0, \ldots, n-1\} - \{\frac{n}{2}\} & \text{if } n \text{ is even}. \end{cases}$
Results for $a_{\lambda,r}$

Corollary

Sundaram’s conjecture is true!
Corollary

Sundaram's conjecture is true! Hence, global conjugacy class classification holds.
Corollary

Sundaram’s conjecture is true! Hence, global conjugacy class classification holds.

Corollary

The statistic “maj mod n” is intuitively uniformly distributed as $n \to \infty$.

Results for $a_{\lambda, r}$
Corollary

Sundaram’s conjecture is true! Hence, global conjugacy class classification holds.

Corollary

The statistic “maj mod n” is intuitively uniformly distributed as $n \to \infty$.

Question

Can we remove “mod n”?
Asymptotic normality: definition

- Let X be a random variable with mean μ, variance σ^2. Let $X^* := (X - \mu)/\sigma$.
Asymptotic normality: definition

- Let X be a random variable with mean μ, variance σ^2. Let $X^* := (X - \mu)/\sigma$.
- Let X_1, X_2, \ldots be a sequence of random variables. Let X^*_N have cumulative distribution function $F_N(t) := \mathbb{P}[X^*_N \leq t]$.
Asymptotic normality: definition

Let X be a random variable with mean μ, variance σ^2. Let $X^* := (X - \mu)/\sigma$.

Let X_1, X_2, \ldots be a sequence of random variables. Let X^*_N have cumulative distribution function $F_N(t) := \mathbb{P}[X^*_N \leq t]$.

Definition

X_1, X_2, \ldots is asymptotically normal if for all $t \in \mathbb{R}$,

$$\lim_{N \to \infty} F_N(t) = F(t)$$

where $F(t)$ is the CDF of the standard normal distribution.
Asymptotic normality: definition

- Let X be a random variable with mean μ, variance σ^2. Let $X^* := (X - \mu)/\sigma$.
- Let X_1, X_2, \ldots be a sequence of random variables. Let X_N^* have cumulative distribution function $F_N(t) := \mathbb{P}[X_N^* \leq t]$.

Definition

X_1, X_2, \ldots is asymptotically normal if for all $t \in \mathbb{R}$,

$$\lim_{N \to \infty} F_N(t) = F(t)$$

where $F(t)$ is the CDF of the standard normal distribution.

- If X has a density function $f(t)$, the characteristic function $\mathbb{E}[e^{itX}]$ of X is the Fourier transform of $f(t)$.
Asymptotic normality: examples

The “original” asymptotic normality result:

Theorem (de Moivre, Laplace)

Let X_N *be the “cardinality” statistic on subsets of* $[N]$. *Then* X_1, X_2, \ldots *is asymptotically normal.*
Asymptotic normality: examples

The “original” asymptotic normality result:

Theorem (de Moivre, Laplace)

Let X_N be the “cardinality” statistic on subsets of $[N]$. Then X_1, X_2, \ldots is asymptotically normal.

More generally:

Theorem (Central limit theorem)

Let X_N be the average of N i.i.d. random variables with finite variance. Then X_1, X_2, \ldots is asymptotically normal.
Asymptotic normality: criteria

We can use characteristic functions:
Asymptotic normality: criteria

We can use characteristic functions:

Theorem (Lévy’s continuity theorem)

A sequence X_1, X_2, \ldots of random variables is asymptotically normal if and only if for all $t \in \mathbb{R}$,

$$
\lim_{N \to \infty} \mathbb{E}[e^{itX_N^*}] = e^{-t^2}
$$
Asymptotic normality: criteria

We can use characteristic functions:

Theorem (Lévy’s continuity theorem)

A sequence X_1, X_2, \ldots of random variables is asymptotically normal if and only if for all $t \in \mathbb{R}$,

$$
\lim_{N \to \infty} \mathbb{E}[e^{itX_N^*}] = e^{-t^2}
$$

There’s a classic, straightforward proof of the CLT using characteristic functions.
Asymptotic normality: criteria

Or, we can look at moments separately:

Theorem (Frechet–Shohat theorem)

A sequence $X_1, X_2, ...$ of random variables (with density functions that decay at least exponentially in the tails) is asymptotically normal if and only if for all $d \in \mathbb{Z} \geq 1$ we have

$$\lim_{N \to \infty} E[(X^*_N)^d] = \begin{cases} 0 & \text{if } d \text{ is odd} \\ \frac{(d-1)!!}{2^{d/2}} & \text{if } d \text{ is even} \end{cases}$$
Asymptotic normality: criteria

Or, we can look at moments separately:

Theorem (Frechét–Shohat theorem)

A sequence X_1, X_2, \ldots of random variables (with density functions that decay at least exponentially in the tails) is asymptotically normal if and only if for all $d \in \mathbb{Z}_{\geq 1}$ we have

$$
\lim_{N \to \infty} \mathbb{E}[(X_N^*)^d] = \begin{cases}
0 & \text{if } d \text{ is odd} \\
(d - 1)!! & \text{if } d \text{ is even}
\end{cases}
$$
Definition
Let \(\text{aft}(\lambda) := |\lambda| - \max\{\lambda_1, \tilde{\lambda}_1\} \).
Definition
Let $aft(\lambda) := |\lambda| - \max\{\lambda_1, \tilde{\lambda}_1\}$.

Theorem (Billey–Konvalinka–S.)
Suppose $\lambda^{(1)}, \lambda^{(2)}, \ldots$ is a sequence of partitions. Let X_N be the random variable corresponding to the major index statistic on $\text{SYT}(\lambda^{(N)})$. Then, the sequence X_1, X_2, \ldots is asymptotically normal if and only if $aft(\lambda^{(N)}) \to \infty$ as $N \to \infty$.

Asymptotic normality and standard tableaux
Asymptotic normality and standard tableaux

Example

\(\lambda^{(1)} = (50, 2), \ \text{aft}(\lambda^{(1)}) = 2 \)
Example

$\lambda^{(2)} = (50, 3, 1), \ \text{aft}(\lambda^{(2)}) = 4$
Asymptotic normality and standard tableaux

Example

\(\lambda^{(3)} = (8, 8, 7, 6, 5, 5, 5, 2, 2) \), \(\text{aft}(\lambda^{(3)}) = 39 \)
Asymptotic normality and standard tableaux

Corollary (Chen–Wang–Wang)

Using $\lambda^{(N)} = (N, N)$, the coefficients of the q-Catalan numbers

$$\frac{1}{[N+1]_q} \binom{2N}{N}_q$$

are asymptotically normal.
Corollary (Chen–Wang–Wang)

\(\lambda^{(N)} = (N, N) \), the coefficients of the \(q \)-Catalan numbers
\[\frac{1}{[N+1]_q} \binom{2N}{N}_q \] are asymptotically normal.

Proof of theorem uses cumulants, Stanley’s formula for \(\text{SYT}(\lambda)^{\text{maj}}(q) \), hook length estimates, method of moments
Corollary (Chen–Wang–Wang)

Using \(\lambda^{(N)} = (N, N) \), the coefficients of the \(q \)-Catalan numbers
\[
\frac{1}{[N+1]_q} \binom{2N}{N}_q
\]
are asymptotically normal.

- Proof of theorem uses cumulants, Stanley’s formula for SYT(\(\lambda \))\(\text{maj} \)(\(q \)), hook length estimates, method of moments
- SYT(\(\lambda \))\(\text{maj} \)(\(q \)) connects to principal specializations of \(s_\lambda \); type \(A \) coinvariant algebra and Lusztig–Stanley theorem; \(GL_n(\mathbb{F}_q) \)-representation theory by work of Green, Steinberg
Further work

- \(\text{diag}(\lambda) \) case settled; generalizes earlier work of Canfield–Janson–Zeilberger, Diaconis, Mann–Whitney, . . .

- Conjectured classification when \(\# \{ T \in \text{SYT}(\lambda) : \text{maj}(T) = k \} = 0 \)

- Similar conjectures for unimodality, log-concavity

- Progress towards a local limit theorem for \(\text{SYT}(\lambda) \)

- General skew shapes?
Further work

- \(\text{diag}(\lambda) \) case settled; generalizes earlier work of Canfield–Janson–Zeilberger, Diaconis, Mann–Whitney, . . .
- Conjectured classification when
 \(#\{ T \in \text{SYT}(\lambda) : \text{maj}(T) = k \} = 0\)
- Similar conjectures for unimodality, log-concavity
- Progress towards a local limit theorem for \(\text{SYT}(\lambda) \)
Further work

- $\text{diag}(\lambda)$ case settled; generalizes earlier work of Canfield–Janson–Zeilberger, Diaconis, Mann–Whitney, …
- Conjectured classification when $\#\{ T \in \text{SYT}(\lambda) : \text{maj}(T) = k \} = 0$
- Similar conjectures for unimodality, log-concavity
Further work

- \(\text{diag}(\lambda) \) case settled; generalizes earlier work of Canfield–Janson–Zeilberger, Diaconis, Mann–Whitney, . . .
- Conjectured classification when
 \[
 \# \{ T \in \text{SYT}(\lambda) : \text{maj}(T) = k \} = 0
 \]
- Similar conjectures for unimodality, log-concavity
- Progress towards a local limit theorem for \(\text{SYT}(\lambda)^{\text{maj}}(q) \)
Further work

- diag(\lambda) case settled; generalizes earlier work of Canfield–Janson–Zeilberger, Diaconis, Mann–Whitney, ...
- Conjectured classification when
 \# \{ T \in SYT(\lambda) : \text{maj}(T) = k \} = 0
- Similar conjectures for unimodality, log-concavity
- Progress towards a local limit theorem for \text{SYT}(\lambda)^{\text{maj}}(q)
- General skew shapes?
Thanks!

FIN.

