Tableaux posets and the fake degrees of coinvariant algebras

AMS Western Sectional Meeting at SFSU

Josh Swanson
University of California, San Diego

based on joint work with
Sara Billey and Matjaž Konvalinka

arXiv:1809.07386
slides: http://www.math.ucsd.edu/~jswanson/

October 27th, 2018
Outline

- Complex reflection groups and coinvariant algebras
Complex reflection groups and coinvariant algebras
Fake degrees and internal zeros
Outline

- Complex reflection groups and coinvariant algebras
- Fake degrees and internal zeros
- Type A: rotation and block rules
Outline

- Complex reflection groups and coinvariant algebras
- Fake degrees and internal zeros
- Type A: rotation and block rules
- $G(m, 1, n)$ generalization
Outline

- Complex reflection groups and coinvariant algebras
- Fake degrees and internal zeros
- Type A: rotation and block rules
- $G(m, 1, n)$ generalization
- $G(m, d, n)$ further generalization
Complex Reflection Groups

Definition

Let V be a finite-dimensional complex vector space. $T \in \text{End}(V)$ is a \textit{pseudo-reflection} if T has finite order and leaves a hyperplane fixed pointwise.
Complex Reflection Groups

Definition

Let V be a finite-dimensional complex vector space. $T \in \text{End}(V)$ is a \textit{pseudo-reflection} if T has finite order and leaves a hyperplane fixed pointwise. A \textit{complex reflection group} is a finite subgroup $G \leq \text{GL}(V)$ generated by pseudo-reflections.

Examples

- Dihedral groups (Type A)
- Symmetric groups (Type B)
- Hyperoctahedral groups (signed permutations; symmetries of the hypercube $\{\pm e_i\}$)
- Cyclic groups
Complex Reflection Groups

Definition

Let V be a finite-dimensional complex vector space. $T \in \text{End}(V)$ is a pseudo-reflection if T has finite order and leaves a hyperplane fixed pointwise. A complex reflection group is a finite subgroup $G \leq \text{GL}(V)$ generated by pseudo-reflections.

Example

- Dihedral groups
Complex Reflection Groups

Definition

Let V be a finite-dimensional complex vector space. $T \in \text{End}(V)$ is a pseudo-reflection if T has finite order and leaves a hyperplane fixed pointwise. A complex reflection group is a finite subgroup $G \leq \text{GL}(V)$ generated by pseudo-reflections.

Example

- Dihedral groups
- (Type A) Symmetric groups
Complex Reflection Groups

Definition

Let V be a finite-dimensional complex vector space. $T \in \text{End}(V)$ is a *pseudo-reflection* if T has finite order and leaves a hyperplane fixed pointwise. A *complex reflection group* is a finite subgroup $G \leq \text{GL}(V)$ generated by pseudo-reflections.

Example

- **Dihedral groups**
- **(Type A) Symmetric groups**
- **(Type B) Hyperoctahedral groups** (signed permutations; symmetries of the hypercube $\text{conv}\{\pm e_i\}$)
Complex Reflection Groups

Definition

Let V be a finite-dimensional complex vector space. $T \in \text{End}(V)$ is a *pseudo-reflection* if T has finite order and leaves a hyperplane fixed pointwise. A *complex reflection group* is a finite subgroup $G \leq \text{GL}(V)$ generated by pseudo-reflections.

Example

- Dihedral groups
- **(Type A)** Symmetric groups
- **(Type B)** Hyperoctahedral groups (signed permutations; symmetries of the hypercube $\text{conv}\{\pm e_i\}$)
- Cyclic groups
Complex Reflection Groups

Definition

Given $m, n \in \mathbb{Z}_{\geq 1}$, let $G(m, 1, n)$ be the group of $n \times n$ pseudo-permutation matrices whose non-zero entries are from $C_m := \{\zeta \in \mathbb{C} : \zeta^m = 1\}$.

Theorem (Shephard–Todd '53)

Up to isomorphism, the complex reflection groups are precisely the direct products of the groups $G(m, d, n)$ along with 34 exceptional groups.
Complex Reflection Groups

Definition

Given $m, n \in \mathbb{Z}_{\geq 1}$, let $G(m, 1, n)$ be the group of $n \times n$ pseudo-permutation matrices whose non-zero entries are from $C_m := \{ \zeta \in \mathbb{C} : \zeta^m = 1 \}$.

Definition

Given $d | m$, let $G(m, 1, n) \to C_m$ be given by multiplying the non-zero elements, let $\phi: G(m, 1, n) \to C_m \to C_d$, and set $G(m, d, n) := \ker \phi$.

Theorem (Shephard–Todd '53)

Up to isomorphism, the complex reflection groups are precisely the direct products of the groups $G(m, d, n)$ along with 34 exceptional groups.
Complex Reflection Groups

Definition
Given $m, n \in \mathbb{Z}_{\geq 1}$, let $G(m, 1, n)$ be the group of $n \times n$ pseudo-permutation matrices whose non-zero entries are from $C_m := \{ \zeta \in \mathbb{C} : \zeta^m = 1 \}$.

Definition
Given $d \mid m$, let $G(m, 1, n) \to C_m$ be given by multiplying the non-zero elements, let $\phi: G(m, 1, n) \to C_m \to C_d$, and set $G(m, d, n) := \ker \phi$.

Theorem
(Shephard–Todd ’53) *Up to isomorphism, the complex reflection groups are precisely the direct products of the groups $G(m, d, n)$ along with 34 exceptional groups.*
Coinvariant Algebras

Definition

Given $G \leq \text{GL}(V)$, the *coinvariant algebra* of G is

$$R_G := \frac{\text{Sym}(V)}{I_G}$$

where I_G is the ideal generated by all homogeneous G-invariants of positive degree.

Remark

R_G is a graded G-module.

(Type A) When $G = S_n$, $R_G = R_n = \mathbb{C}[x_1, \ldots, x_n]/\langle e_1, \ldots, e_n \rangle$.

(Type B) When $G = G(2, 1, n)$, $R_G = R_{2, 1, n} = \mathbb{C}[x_1, \ldots, x_n]/\langle e_i(x_2^i, \ldots, x_n^i) : 1 \leq i \leq n \rangle$.

Coinvariant Algebras

Definition

Given \(G \leq \text{GL}(V) \), the *coinvariant algebra* of \(G \) is

\[
R_G := \frac{\text{Sym}(V)}{I_G}
\]

where \(I_G \) is the ideal generated by all homogeneous \(G \)-invariants of positive degree.

Remark

\(R_G \) is a graded \(G \)-module.
Coinvariant Algebras

Definition

Given $G \leq \text{GL}(V)$, the *coinvariant algebra* of G is

$$R_G := \frac{\text{Sym}(V)}{I_G}$$

where I_G is the ideal generated by all homogeneous G-invariants of positive degree.

Remark

R_G is a graded G-module.

(Type A) When $G = S_n$,

$$R_G = R_n = \mathbb{C}[x_1, \ldots, x_n]/(e_1, \ldots, e_n).$$
Coinvariant Algebras

Definition
Given $G \leq \text{GL}(V)$, the *coinvariant algebra* of G is

\[R_G := \frac{\text{Sym}(V)}{I_G} \]

where I_G is the ideal generated by all homogeneous G-invariants of positive degree.

Remark
R_G is a graded G-module.

(Type A) When $G = S_n$,

\[R_G = R_n = \mathbb{C}[x_1, \ldots, x_n]/(e_1, \ldots, e_n). \]

(Type B) When $G = G(2, 1, n)$,

\[R_G = R_{2,1,n} = \mathbb{C}[x_1, \ldots, x_n]/(e_i(x_1^2, \ldots, x_n^2) : 1 \leq i \leq n). \]
Theorem

(Chevalley '55) R_G as an ungraded module is isomorphic to the regular representation of the complex reflection group G.

Fake Degrees

Definition

Let S be an irreducible representation of G. Lusztig called $f_S(q) = \sum_{i \geq 0} \text{mult. of } S$ in ith degree piece of $R_G \cdot q^i$ the fake degree of S.

By Chevalley’s result, $f_S(1) = \deg S$.

Equivalently, what are the $f_S(q)$'s?
Fake Degrees

Theorem (Chevalley ’55) \(R_G \) as an ungraded module is isomorphic to the regular representation of the complex reflection group \(G \).

Definition

Let \(S \) be an irreducible representation of \(G \). Lusztig called

\[
f^S(q) := \sum_{i \geq 0} \text{mult. of } S \text{ in } i\text{th degree piece of } R_G \cdot q^i
\]

the fake degree of \(S \).
Fake Degrees

Theorem

(Chevalley '55) R_G as an ungraded module is isomorphic to the regular representation of the complex reflection group G.

Definition

Let S be an irreducible representation of G. Lusztig called

$$f^S(q) := \sum_{i \geq 0} \text{mult. of } S \text{ in } i\text{th degree piece of } R_G \cdot q^i$$

the *fake degree* of S. By Chevalley’s result, $f^S(1) = \deg S$.
Fake Degrees

Theorem (Chevalley '55) R_G as an ungraded module is isomorphic to the regular representation of the complex reflection group G.

Definition Let S be an irreducible representation of G. Lusztig called

$$f^S(q) := \sum_{i\geq 0} \text{mult. of } S \text{ in } i\text{th degree piece of } R_G \cdot q^i$$

the fake degree of S. By Chevalley’s result, $f^S(1) = \deg S$.

Question What is the graded irreducible decomposition of R_G for $G = G(m, d, n)$?
Fake Degrees

Theorem

(Chevalley '55) \(R_G \) as an ungraded module is isomorphic to the regular representation of the complex reflection group \(G \).

Definition

Let \(S \) be an irreducible representation of \(G \). Lusztig called

\[
 f^S(q) := \sum_{i \geq 0} \text{mult. of } S \text{ in } i\text{th degree piece of } R_G \cdot q^i
\]

the fake degree of \(S \). By Chevalley’s result, \(f^S(1) = \deg S \).

Question

What is the graded irreducible decomposition of \(R_G \) for \(G = G(m, d, n) \)? Equivalently, what are the \(f^S(q) \)'s?
Partitions

Definition

A partition λ of n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots$ such that $\sum_i \lambda_i = n$.
Partitions

Definition

A partition λ of n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots$ such that $\sum_i \lambda_i = n$. Partitions can be visualized by their Ferrers diagram

\[
\lambda = (5, 3, 1) \leftrightarrow \begin{array}{cccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
\end{array}
\]
Partitions

Definition
A partition λ of n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots$ such that $\sum_i \lambda_i = n$. Partitions can be visualized by their Ferrers diagram

\[
\lambda = (5, 3, 1) \leftrightarrow \\
\begin{array}{cccc}
\square & \square & \square & \\
\square & \square & \\
\square & \\
\end{array}
\]

Theorem
(Young, early 1900’s) The complex inequivalent irreducible representations S^λ of S_n are canonically indexed by partitions of n.

Remark
By contrast, the irreps of C_m are most naturally indexed by \mathbb{Z}/m only up to $\phi(m)$ additive automorphisms.
Standard Tableaux

Definition

A standard Young tableau (SYT) of shape \(\lambda \vdash n \) is a filling of the cells of the Ferrers diagram of \(\lambda \) with 1, 2, \ldots, \(n \) which increases along rows and decreases down columns.

\[
T = \begin{array}{cccc}
1 & 3 & 6 & 7 & 9 \\
2 & 5 & 8 \\
4
\end{array} \in \text{SYT}(\lambda)
\]
Standard Tableaux

A *standard Young tableau* (SYT) of shape $\lambda \vdash n$ is a filling of the cells of the Ferrers diagram of λ with $1, 2, \ldots, n$ which increases along rows and decreases down columns.

$$T = \begin{array}{cccc}
1 & 3 & 6 & 7 & 9 \\
2 & 5 & 8 & \\
4 &
\end{array} \in SYT(\lambda)$$

Descent set: $\{1, 3, 7\}$.

The *descent set* of $T \in SYT(\lambda)$ is the set

$$\{1 \leq i < n : i + 1 \text{ is in a lower row of } T \text{ than } i\}.$$
Standard Tableaux

Definition

A *standard Young tableau (SYT)* of shape $\lambda \vdash n$ is a filling of the cells of the Ferrers diagram of λ with $1, 2, \ldots, n$ which **increases along rows** and **decreases down columns**.

$T = \begin{array}{cccc}
1 & 3 & 6 & 7 \\
2 & 5 & 8 \\
4 \\
\end{array} \in \text{SYT}(\lambda)$

Descent set: $\{1, 3, 7\}$. Major index: $1 + 3 + 7 = 11$.

Definition

The *descent set* of $T \in \text{SYT}(\lambda)$ is the set

$$\{1 \leq i < n : i + 1 \text{ is in a lower row of } T \text{ than } i\}.$$

Definition

The *major index* of $T \in \text{SYT}(\lambda)$ is the sum of the descents.
Theorem

(Lusztig–Stanley ’70’s) The type A fake degrees are

\[f^{S^\lambda}(q) = f^\lambda(q) = \sum_{T \in \text{SYT}(\lambda)} q^{\text{maj}(T)}. \]
Type A Fake Degrees

(Lusztig–Stanley ’70’s) The type A fake degrees are

\[f^{S^\lambda}(q) = f^\lambda(q) = \sum_{T \in \text{SYT}(\lambda)} q^{\text{maj}(T)}. \]

Equivalently, the number of copies of \(S^\lambda \) in the \(r \)th graded piece of \(R_n \) is \(\#\{ T \in \text{SYT}(\lambda) : \text{maj}(T) = r \} \).
Type A Fake Degrees

(Lusztig–Stanley ’70’s) The type A fake degrees are

\[f^{S^\lambda}(q) = f^\lambda(q) = \sum_{T \in \text{SYT}(\lambda)} q^{\text{maj}(T)}. \]

Equivalently, the number of copies of \(S^\lambda \) in the \(r \)th graded piece of \(R_n \) is \(\# \{ T \in \text{SYT}(\lambda) : \text{maj}(T) = r \} \).

Example \(f^{(5,3,1)}(q) = q^5 (q^{18} + 2q^{17} + 4q^{16} + 5q^{15} + 8q^{14} + 10q^{13} + 13q^{12} + 14q^{11} + 16q^{10} + 16q^9 + 16q^8 + 14q^7 + 13q^6 + 10q^5 + 8q^4 + 5q^3 + 4q^2 + 2q + 1) \).
Type A Fake Degrees

Visualizing the coefficients of $q^{-5} f^{(5,3,1)}(q)$:

$(1, 2, 4, 5, 8, 10, 13, 14, 16, 16, 16, 14, 13, 10, 8, 5, 4, 2, 1)$
Enumerative Questions

Question

Are the fake degree coefficients log-concave?
Enumerative Questions

Question

- Are the fake degree coefficients log-concave?
- Are they unimodal?
Enumerative Questions

Question

- Are the fake degree coefficients log-concave?
- Are they unimodal?
- **When are they zero?**
Enumerative Questions

Question

- Are the fake degree coefficients log-concave?
- Are they unimodal?
- **When are they zero?** (Adin–Elizalde–Roichman recently and independently asked this question about the number of descents rather than maj.)
Type A Internal Zeros Classification

Lemma

(BKS 18+) The $b(\lambda) + 1$ coefficient of $f^\lambda(q)$ is zero if and only if λ is a rectangle (not a row or column).
Type A Internal Zeros Classification

Lemma

(BKS 18+) \textit{The } b(\lambda) + 1 \textit{ coefficient of } f^\lambda(q) \textit{ is zero if and only if } \lambda \textit{ is a rectangle (not a row or column).}

Question

\textbf{Are there other internal zeros?}
Type A Internal Zeros Classification

Lemma
(BKS 18+) The $b(\lambda) + 1$ coefficient of $f^\lambda(q)$ is zero if and only if λ is a rectangle (not a row or column).

Question
Are there other internal zeros? No:

Theorem
(BKS 18+) The fake degree $f^\lambda(q)$ has internal zeros if and only if λ is a rectangle (not a row or column).
Type A Internal Zeros Classification

Lemma (BKS 18+) *The* \(b(\lambda) + 1\) *coefficient of* \(f^\lambda(q)\) *is zero if and only if* \(\lambda\) *is a rectangle (not a row or column).*

Question Are there other internal zeros? No:

Theorem (BKS 18+) *The fake degree* \(f^\lambda(q)\) *has internal zeros if and only if* \(\lambda\) *is a rectangle (not a row or column).*

Corollary (Best Primality Test!) \(n > 1\) *is prime if and only if* \(f^\lambda(q)\) *has no internal zeros for any* \(\lambda \vdash n\).
Proof Strategy

- Start at the unique $T \in SYT(\lambda)$ with minimal maj.
Proof Strategy

- Start at the unique $T \in \text{SYT}(\lambda)$ with minimal maj.
- Find a map $\phi: \text{SYT}(\lambda) - \mathcal{E}(\lambda) \rightarrow \text{SYT}(\lambda)$ which only slightly alters descent sets such that $\text{maj}(\phi(T)) = \text{maj}(T) + 1$.

[Diagram or illustration related to proof strategy]
Proof Strategy

- Start at the unique $T \in \text{SYT}(\lambda)$ with minimal maj.
- Find a map $\phi : \text{SYT}(\lambda) - \mathcal{E}(\lambda) \to \text{SYT}(\lambda)$ which only slightly alters descent sets such that $\text{maj}(\phi(T)) = \text{maj}(T) + 1$.
- Iterate ϕ starting at $\text{minmaj}(\lambda)$, ending at $\text{maxmaj}(\lambda)$.
Rotations

Definition

A positive rotation for \(T \in \text{SYT}(\lambda) \) is an interval \([i, k] \subset [n]\) such that if \(T' := (i, i + 1, \ldots, k - 1, k) \cdot T\), then \(T' \in \text{SYT}(\lambda) \) and there is some \(j \) for which

\[
\{j\} = \text{Des}(T') - \text{Des}(T)
\]

\[
\{j - 1\} = \text{Des}(T) - \text{Des}(T').
\]

A negative rotation is exactly the same except \((i, i + 1, \ldots, k - 1, k)\) is reversed.

Key Fact Applying rotations increases maj by 1!
Rotations

A *positive rotation* for $T \in SYT(\lambda)$ is an interval $[i, k] \subset [n]$ such that if $T' := (i, i + 1, \ldots, k - 1, k) \cdot T$, then $T' \in SYT(\lambda)$ and there is some j for which

$$\{j\} = \text{Des}(T') - \text{Des}(T)$$
$$\{j - 1\} = \text{Des}(T) - \text{Des}(T').$$

A *negative rotation* is exactly the same except $(i, i + 1, \ldots, k - 1, k)$ is reversed.
A **positive rotation** for $T \in \text{SYT}(\lambda)$ is an interval $[i, k] \subset [n]$ such that if $T' := (i, i + 1, \ldots, k - 1, k) \cdot T$, then $T' \in \text{SYT}(\lambda)$ and there is some j for which

$$\{j\} = \text{Des}(T') - \text{Des}(T)$$

$$\{j - 1\} = \text{Des}(T) - \text{Des}(T').$$

A **negative rotation** is exactly the same except $(i, i + 1, \ldots, k - 1, k)$ is reversed.

Key Fact Applying rotations increases maj by 1!
Rotations

$T' := (i, i + 1, \ldots, k - 1, k) \cdot T$ or $T' := (k, k - 1, \ldots, i + 1, i) \cdot T$, $T' \in \text{SYT}(\lambda)$, $\exists j$ s.t. the descent at $j - 1$ in T turned into a descent at j in T'.

Example

\[
\begin{array}{ccc}
1 & 4 & \\
2 & 5 & \\
3 & 9 & \\
6 & & \\
7 & & \\
8 & & \\
\end{array}
\quad\rightarrow\quad
\begin{array}{ccc}
1 & 3 & \\
2 & 4 & \\
5 & 9 & \\
6 & & \\
7 & & \\
8 & & \\
\end{array}
\]

$\text{Des}(T) = \{1, 2, 4, 5, 6, 7\}$

$\rightarrow \text{Des}(T') = \{1, 3, 4, 5, 6, 7\}$
Rotations

Rotations have a characterization using combinatorial “patterns”
Rotations

- Rotations have a characterization using combinatorial “patterns”
- Rotations are plentiful: for SYT(5, 4, 4, 2), only 24 out of 81081 tableaux cannot be rotated

Lemma
Every (non-exceptional) tableau which avoids the pattern 1 2 /uni22EF i i + 1 z + 1 i + 2 ⋮ z admits a rotation. Rotations preserve the number of descents, but minmaj(λ) and maxmaj(λ) typically have different numbers of descents.
Rotations

Rotations have a characterization using combinatorial “patterns”

Rotations are plentiful: for SYT(5, 4, 4, 2), only 24 out of 81081 tableaux cannot be rotated

Lemma

Every (non-exceptional) tableau which avoids the pattern

\[
\begin{array}{cccc}
1 & 2 & \cdots & i \\
 & i+1 & z+1 & \\
 & i+2 & \\
 & \vdots & \\
 & z &
\end{array}
\]

admits a rotation.
Rotations

Rotations have a characterization using combinatorial “patterns”

Rotations are plentiful: for SYT(5, 4, 4, 2), only 24 out of 81081 tableaux cannot be rotated

Lemma

Every (non-exceptional) tableau which avoids the pattern

\[
\begin{array}{cccccc}
1 & 2 & \cdots & i \\
\vdots & & & \vdots \\
i & i+1 & z+1 & i+2 & \cdots & z
\end{array}
\]

admits a rotation.

Rotations preserve the number of descents, but \(\text{minmaj}(\lambda)\) and \(\text{maxmaj}(\lambda)\) typically have different numbers of descents.
Block Rules

We have 5 additional “block rules” which add a descent while incrementing maj by 1.

Example

B2:

```
1 2 3 4 5
6 7 8 9 10
11 12 13
```
Strong Poset

Each rotation rule and block rule has an “inverse-transpose” version obtained from the combinatorial descriptions by transposing the diagrams and reversing the arrows.
Definition

Each rotation rule and block rule has an “inverse-transpose” version obtained from the combinatorial descriptions by transposing the diagrams and reversing the arrows.

The strong SYT poset $P(\lambda)$ on $\text{SYT}(\lambda)$ is obtained by defining the cover relations to be rotations, block rules, and their inverse-transposes.
Strong Poset

Each rotation rule and block rule has an “inverse-transpose” version obtained from the combinatorial descriptions by transposing the diagrams and reversing the arrows.

Definition

The *strong SYT poset* $P(\lambda)$ on $\text{SYT}(\lambda)$ is obtained by defining the cover relations to be rotations, block rules, and their inverse-transposes.

Corollary

If λ is not a rectangle, $P(\lambda)$ is ranked (up to a shift) by maj and has unique minimal and maximal elements. Indeed, $P(\lambda)$ is ranked by $(\text{des}, \text{maj} - \text{des})$ in the sense that rotation rules increase this by $(0, 1)$ and block rules increase this by $(1, 0)$.
Strong Poset

Example

For SYT(3, 2, 1):
Corollaries

- Type A maj internal zeros classification
Corollaries

- Type A maj internal zeros classification
- Answered Adin–Elizalde–Roichman des internal zeros question for straight shapes (there are none)
Corollaries

- Type A maj internal zeros classification
- Answered Adin–Elizalde–Roichman des internal zeros question for straight shapes (there are none)
- maj–des internal zeros classification for free
G(m, 1, n) Fake Degrees

(Specht, ’35) *The irreps of G(m, 1, n) are indexed (more-or-less canonically) by block diagonal skew partitions \(\lambda \) with \(m \) blocks and \(n \) total cells.*

Example

\(n = 10, m = 3: \)

\[\lambda = ((3, 2), (1, 1), (3)) = \]

\[
\begin{array}{cccccccccc}
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\end{array}
\]
G(m, 1, n) Fake Degrees

(Specht, ’35) *The irreps of G(m, 1, n) are indexed (more-or-less canonically) by block diagonal skew partitions \(\lambda \) with \(m \) blocks and \(n \) total cells.*

Example

\(n = 10, m = 3: \)

\[\lambda = ((3, 2), (1, 1), (3)) = \]

(The fake degrees are the same up to a \(q \)-shift regardless of the indexing scheme.)
G(m, 1, n) Fake Degrees

(Specht, ’35) *The irreps of G(m, 1, n) are indexed (more-or-less canonically) by block diagonal skew partitions \(\lambda \) with \(m \) blocks and \(n \) total cells.*

Example

\(n = 10, m = 3: \)

\[\lambda = ((3, 2), (1, 1), (3)) = \]

(The fake degrees are the same up to a \(q \)-shift regardless of the indexing scheme.)

(Stembridge ’89) *For \(\underline{\lambda} = (\lambda^{(1)}, \ldots, \lambda^{(m)}) \vdash n, \)

\[
f^{S\underline{\lambda}}(q) = f^{\underline{\lambda}}(q) = q^{b(\alpha(\underline{\lambda}))} \left(\frac{n}{\alpha(\lambda)} \right) \prod_{i=1}^{m} f^{\lambda^{(i)}}(q^m).\]
Theorem

(BKS 18+) Let λ be a sequence of m partitions with $|\lambda| = n$, and assume $f^\lambda(q) = \sum_k b_{\lambda,k} q^k$. Then for $k \in \mathbb{Z}$, $b_{\lambda,k} \neq 0$ if and only if

$$\frac{k - b(\alpha(\lambda))}{m} - b(\lambda) \in \left\{ 0, 1, \ldots, \left(\frac{n+1}{2}\right) - \sum_{c \in \lambda} h_c \right\} \setminus \mathcal{D}_\lambda,$$

where \mathcal{D}_λ is empty unless λ has a single non-empty partition $\lambda^{(i)}$ which is a rectangle with at least two rows and columns, in which case

$$\mathcal{D}_\lambda = \left\{ 1, \left(\frac{n+1}{2}\right) - \sum_{c \in \lambda^{(i)}} h_c - 1 \right\}.$$
Theorem

(Clifford Theory) The irreps of $G(m, d, n)$ are (more-or-less canonically) indexed by pairs $(\{\lambda\}^d, c)$ where λ has m parts and n cells, $\{\lambda\}^d$ is its orbit under the size d group of cyclic rotations, and c is an element of the stabilizer of this orbit.
Theorem (Clifford Theory) The irreps of $G(m, d, n)$ are (more-or-less canonically) indexed by pairs $(\{\lambda\}^d, c)$ where λ has m parts and n cells, $\{\lambda\}^d$ is its orbit under the size d group of cyclic rotations, and c is an element of the stabilizer of this orbit.

Example (Type D) For $G(2, 2, n)$, one can index by sets $\{\lambda, \mu\}$ with $|\lambda| + |\mu| = n$, at least when $\lambda \neq \mu$.
(Clifford Theory) The irreps of $G(m,d,n)$ are (more-or-less canonically) indexed by pairs $(\{\lambda\}^d, c)$ where λ has m parts and n cells, $\{\lambda\}^d$ is its orbit under the size d group of cyclic rotations, and c is an element of the stabilizer of this orbit.

(Type D) For $G(2,2,n)$, one can index by sets $\{\lambda, \mu\}$ with $|\lambda| + |\mu| = n$, at least when $\lambda \neq \mu$.

(In fact, $f^{\{\lambda\}^d,c}(q)$ does not depend on c.)
(Clifford Theory) The irreps of $G(m, d, n)$ are (more-or-less canonically) indexed by pairs $(\{\lambda\}^d, c)$ where λ has m parts and n cells, $\{\lambda\}^d$ is its orbit under the size d group of cyclic rotations, and c is an element of the stabilizer of this orbit.

Example (Type D) For $G(2, 2, n)$, one can index by sets $\{\lambda, \mu\}$ with $|\lambda| + |\mu| = n$, at least when $\lambda \neq \mu$.

(In fact, $f_{\{\lambda\}^d, c}(q)$ does not depend on c.)

(Stembridge ’89, BKS 18+)

$$f_{S\{\lambda\}, c}(q) = f_{\{\lambda\}^d}(q)$$

$$= \frac{\#\{\lambda\}^d}{d} \cdot \left[\binom{n}{\alpha(\lambda)} \right]_{q;d} \cdot \prod_{i=1}^{m} f^{\lambda(i)}(q^m).$$
\(G(m, d, n)\) Internal Zeros

(BKS 18+) Let \(\lambda\) be a sequence of \(m\) partitions with \(|\lambda| = n \geq 1\), let \(d \mid m\), and let \(\{\lambda\}^d\) be the orbit of \(\lambda\) under the group \(C_d\) of \((m/d)\)-fold cyclic rotations. Then \(b_{\{\lambda\}^d,k \neq 0}\) if and only if for some \(\mu \in \{\lambda\}\) we have

\[
|\mu^{(1)}| + \cdots + |\mu^{(m/d)}| > 0 \text{ and }
\]

\[
\frac{k - b(\alpha(\mu))}{m} - b(\mu) \in \mathbb{Z}
\]

\[
\{0, 1, \ldots, |\mu^{(1)}| + \cdots + |\mu^{(m/d)}|\}
\]

\[
+ \binom{n}{2} - \sum_{c \in \mu} h_c \}
\]

\(\\mathcal{D}_{\mu;d}\).
Theorem

(Continued.) Here $\mathcal{D}_{\mu;d}$ is empty unless either

1. μ has a partition μ of size n; or

2. μ has a partition μ of size $n - 1$ and

$$|\mu^{(1)}| + \cdots + |\mu^{(m/d)}| = 1,$$

where in both cases μ must be a rectangle with at least two rows and columns. In case (1), we have

$$\mathcal{D}_{\mu;d} := \left\{ 1, \left(\frac{n + 1}{2} \right) - \sum_{c \in \mu} h_c - 1 \right\},$$

and in case (2) we have

$$\mathcal{D}_{\mu;d} := \left\{ 1, \left(\frac{n}{2} \right) - \sum_{c \in \mu} h_c \right\}.$$
Further work

- Probability: coefficients of $f_{\lambda}(q)$ are generally asymptotically normal. (To appear!)

- When does $\sum_{T \in \text{SYT}(\lambda/\mu)} q^{\text{maj}(T)}$ have internal zeros? (Mostly done; 5 extra block rules)

- Give a general, representation-theoretic interpretation of rotation rules

- The same for block rules?

- Unimodality classification conjecture

- Study deformed Gaussian binomial coefficients $\binom{n}{\alpha}_q$; d

- Conceptual explanation for primality corollary/why are rectangles special?
Further work

- Probability: coefficients of $f_\lambda(q)$ are generally *asymptotically normal*. (To appear!)

- When does $\sum_{T \in SYT(\lambda/\mu)} q^{\text{maj}(T)}$ have internal zeros? (Mostly done; 5 extra block rules)
Further work

- Probability: coefficients of $f^\lambda(q)$ are generally \textit{asymptotically normal}. (To appear!)
- When does $\sum_{T \in \text{SYT}(\lambda/\mu)} q^{\text{maj}(T)}$ have internal zeros? (Mostly done; 5 extra block rules)
- Give a general, representation-theoretic interpretation of rotation rules
Further work

- Probability: coefficients of $f^\lambda(q)$ are generally \textit{asymptotically normal}. (To appear!)
- When does $\sum_{T \in \text{SYT}(\lambda/\mu)} q^{\text{maj}(T)}$ have internal zeros? (Mostly done; 5 extra block rules)
- Give a general, representation-theoretic interpretation of rotation rules
- The same for block rules?

Unimodality classification conjecture
Study deformed Gaussian binomial coefficients /bracketleft.alt n /bracketright.alt q;d
Conceptual explanation for primality corollary/why are rectangles special?
Further work

- Probability: coefficients of $f^\lambda(q)$ are generally **asymptotically normal**. (To appear!)
- When does $\sum_{T \in SYT(\lambda/\mu)} q^{\text{maj}(T)}$ have internal zeros? (Mostly done; 5 extra block rules)
- Give a general, representation-theoretic interpretation of rotation rules
- The same for block rules?
- Unimodality classification conjecture
Further work

- Probability: coefficients of $f^\lambda(q)$ are generally \textit{asymptotically normal}. (To appear!)
- When does $\sum_{T \in SYT(\lambda/\mu)} q^{\text{maj}(T)}$ have internal zeros? (Mostly done; 5 extra block rules)
- Give a general, representation-theoretic interpretation of rotation rules
- The same for block rules?
- Unimodality classification conjecture
- Study deformed Gaussian binomial coefficients $\left[n\atop \alpha\right]_{q;d}$
Further work

- Probability: coefficients of $f^\lambda(q)$ are generally asymptotically normal. (To appear!)
- When does $\sum_{T \in \text{SYT}(\lambda/\mu)} q^{\text{maj}(T)}$ have internal zeros? (Mostly done; 5 extra block rules)
- Give a general, representation-theoretic interpretation of rotation rules
- The same for block rules?
- Unimodality classification conjecture
- Study deformed Gaussian binomial coefficients $\left[\begin{array}{c} n \\ \alpha \end{array} \right]_{q;d}$
- Conceptual explanation for primality corollary/why are rectangles special?
Thanks!

THANKS!