1. Homotopy and the properties of the fundamental group

Homotopy

1. Show that any non-surjective map \(f : X \to S^n \) is homotopic to a constant map.

2. Let \(f, g : X \to S^n \) be such that for any \(x \in X \), \(f(x) \) and \(g(x) \) are not antipodal points on the sphere. Show that \(f \simeq g \).

3. Show that when \(n \) is odd, the antipodal map \(S^n \to S^n \), given by negation of unit vectors \(x \mapsto -x \), is homotopic to the identity map of \(S^n \).

4. A space which is homotopy-equivalent to a point is called contractible. Show that a space is contractible if and only if its identity map is homotopic to a constant map.

5. The Möbius strip \(M \) is defined as \(I \times I \) quotiented by the relation \((x, 0) \sim (1 - x, 1), \forall x \in I \). Prove that \(S^1 \times I \) is homotopy-equivalent to the Möbius strip \(M \).

6. Show that \(\mathbb{R}^3 - S^1 \) (the complement of the unit circle in the \((x, y)\)-plane) is homotopy-equivalent to the one-point union (obtained by identifying one point from each) \(S^1 \vee S^2 \).

7. Classify the capital letters of the alphabet up to homeomorphism and up to homotopy-equivalence! (Assume that \(S^1, S^1 \vee S^1 \) and a point are not homotopy-equivalent to one another.)

8. (Tricky but important!) Let \(f, g : S^1 \to X \) be two maps from the circle to a topological space \(X \). Define a space \(P = X \cup_f B^2 \) by “attaching a disc along \(f \)”: form the disjoint union \(X \sqcup B^2 \) and then identify each point \(x \in S^1 = \partial B^2 \) with its image \(f(x) \in X \). Define \(Q = X \cup_g B^2 \) similarly. Prove that if \(f \simeq g \), then \(P \simeq Q \); thus, “the homotopy type of \(X \cup_f B^2 \) depends only on the homotopy class of the attaching map”.

Properties of the fundamental group

9. Let \(X \) be a path-connected, simply-connected (having trivial fundamental group) space, and let \(x, y \) be points of \(X \). Show that all paths from \(x \) to \(y \) are homotopic rel \(\{0, 1\} \).

10. Let \(X \) and \(Y \) be topological spaces, let \(A \) a subspace of \(X \) and let \(f : A \to Y \) be a map. A map \(F : X \to Y \) is said to be an extension of \(f \) if its restriction to \(A \) is given by \(f \). Show that the fundamental group of a path-connected space \(X \) is trivial if and only if every continuous map \(f : S^1 \to X \) has an extension to a continuous map \(F : B^2 \to X \).

11. Show that \(\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0) \).

12. Let \(N \) and \(S \) be the poles of the sphere \(S^n \). Supposing that \(n \geq 2 \), prove that any path in \(S^n \) may be written as a composite of finitely many paths, each of which is contained in \(S^n - \{N\} \) or \(S^n - \{S\} \), and consequently that \(\pi_1(S^n) = 1 \) for \(n \geq 2 \).