Question 1. Determine the exact numerical values of the following binomial coefficients:

(a) \(\binom{1}{2} \)
(b) \(\binom{n}{0} \)
(c) \(\binom{n}{n-1} \)
(d) \(\binom{1/2}{4} \)
(e) \(\binom{-1/2}{4} \)
(f) \(\binom{-1/3}{3} \)
(g) \(\binom{1/3}{k} \).

Solutions.

(a) 0 (b) 1 (c) \(n \) (d) \(-\frac{5}{128} \) (e) \(\frac{35}{128} \) (f) \(-\frac{14}{81} \) (g) \(1 \cdot (-2) \cdot (-5) \cdots (4-3k) \) for \(k > 0 \) and 1 for \(k = 0 \).

Question 2. Find the inverses of the following formal power series as a sum of powers of \(x \), or state that the power series has no inverse. Justify your answers.

(a) \(1 - 2x + x^2 \)
(b) \(x(1 - x) \)
(c) \(4 - x^2 \)
(d) \(1 - x + x^2 - x^3 + x^4 - x^5 + \ldots \)
(e) \(1 + 2x + 3x^2 + 4x^3 + 5x^4 + \ldots \)
(f) \(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots \)

Solutions.

(a) \(1 - 2x + x^2 = (1 - x)^2 \). Therefore the inverse is

\[
(1 - x)^{-2} = \sum_{j=0}^{\infty} \binom{-2}{j} (-x)^j = \sum_{j=0}^{\infty} (j + 1) x^j
\]

from the binomial theorem.

(b) This has no inverse since it has a zero constant term (see theorem in the notes).

(c) \((4 - x^2)^{-1} = \frac{1}{4} (1 - \frac{x^2}{4})^{-1} = \frac{1}{4} \sum_{j=0}^{\infty} \binom{4}{j} (-\frac{x^2}{4})^j \) (geometric series).

(d) \(1 - x + x^2 - x^3 + \ldots = \sum_{j=0}^{\infty} (-1)^j x^j = \frac{1}{1+x} \). Therefore \(1 + x \) is the inverse.

(e) \(1 + 2x + 3x^2 + 4x^3 + \ldots = \sum_{j=0}^{\infty} (j + 1) x^j \). Now we know from part (a) that the inverse is \(1 - 2x + x^2 \).

(f) This is \(A(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \). We know from calculus that this is \(e^x \) if \(x \) has a real value. So it makes sense to use the Taylor expansion of \(e^{-x} \) as an inverse: the inverse we guess is

\[
B(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^k}{k!} = 1 - x + \frac{x^2}{2!} - \ldots
\]
and we can check this directly by multiplying the two formal power series. We see that

\[[x^n]A(x)B(x) = \sum_{k=0}^{n} \frac{(-1)^k}{k!} \frac{1}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} = \frac{1}{n!} (1-1)^n = 0 \]

provided \(n \neq 0 \). For \(n = 0 \) we get 1. So we conclude \(A(x)B(x) \) has all terms zero except \(1 \cdot x^0 = 1 \), and so \(B(x) \) is the inverse of \(A(x) \).

Question 3. Determine the generating function in closed form for the given set \(S \) of configurations with weight function \(\omega \).

(a) \(S \) is the set of subsets of \([n] \), \(\omega(\sigma) = |\sigma| \)
(b) \(S = \mathbb{Z}^+ \) and \(\omega(\sigma) = 2\sigma \).
(c) \(S = [n] \) and \(\omega(\sigma) = \sigma \) if \(\sigma \) is odd and \(\omega(\sigma) = 0 \) otherwise.
(d) \(S = [n] \) and \(\omega(\sigma) = 1 \) if \(\sigma \) is odd and \(\omega(\sigma) = 0 \) if \(\sigma \) is even.
(e) \(S \) is the set of permutations of \([4] \), \(\omega(\sigma) \) is the number of fixed points of \(\sigma \).
(f) \(S \) is the set of pairs \((a, b)\) of positive integers, and \(\omega(a, b) = a + b \).
(g) \(S \) is the set of pairs \((a, b)\) of positive integers, and \(\omega(a, b) = 2a + b \).

Solutions.

(a) We did this in class, it is \((1 + x)^n\) since \(a_k = \binom{n}{k} \) is the number of \(\sigma \in S \) with \(\omega(\sigma) = k \).

(b) We get \(\Phi_S(x) = \sum_{k=0}^{\infty} x^{2k} = \frac{1}{1-x^2} \).

(c) Since \(a_0 = \infty \) (there are infinitely many things of weight zero, namely all even numbers) the generating function does not exist.

(d) In this case \(a_0 = \lceil \frac{n}{2} \rceil \) and \(a_1 = \lfloor \frac{n}{2} \rfloor \) and \(a_k = 0 \) otherwise. Therefore

\[\Phi(x) = \lceil \frac{n}{2} \rceil + \lfloor \frac{n}{2} \rfloor x. \]

(e) From the notes, there are \(\lfloor n!/e + 1/2 \rfloor \) derangements of \(n \) elements. Now that means \(\lfloor 4!/e + 1/2 \rfloor = 9 \) permutations have zero fixed points (weight zero). The number of permutations with one fixed point is \(4 \cdot \lfloor 3!/e + 1/2 \rfloor = 8 \) since there are 4 choices for where the fixed point is and \(\lfloor 3!/e + 1/2 \rfloor \) ways to fill in the rest with no more fixed points. Similarly there are \(\binom{4}{2} \lfloor 2!/e + 1/2 \rfloor = 6 \) permutations with two fixed points. There are no permutations with exactly three fixed points and one permutation with four fixed points. Therefore

\[\Phi(x) = 9 + 8x + 6x^2 + x^4. \]

(f) \(\Phi(x) = \sum_{(a, b)} x^{a+b} = \sum_{a=1}^{\infty} x^a \sum_{b=1}^{\infty} x^b = \frac{x^2}{(1-x)^2} \)

(g) \(\Phi(x) = \sum_{(a, b)} x^{2a+b} = \sum_{a=1}^{\infty} x^{2a} \sum_{b=1}^{\infty} x^b = \frac{x^3}{(1-x)(1-x^2)} \).
Question 4. Compute the average maximum element of non-empty subsets of $[n]$.

Solution. Let S be the set of nonempty subsets of n and $\omega(\sigma) = \max \sigma$. There are 2^{k-1} sets in S of weight k – having put k, the maximum element, into the set, we can choose any subset of $[k-1]$ to add to $\{k\}$ to get a set with maximum element equal to k. Therefore

$$\Phi_S(x) = \sum_{k=1}^{n} 2^{k-1} x^k = \frac{x(1 - (2x)^n)}{1 - 2x}.$$

The average maximum element is $\Phi'_S(1)/\Phi_S(1)$ according to a theorem in the notes. Clearly $\Phi_S(1) = 2^n - 1$. Now

$$\Phi'_S(x) = \frac{n(2x)^{n+1} - (n+1)(2x)^n + 1}{(1 - 2x)^2}.$$

Therefore

$$\Phi'_S(1) = n2^{n+1} - (n+1)2^n + 1$$

and the average maximum is

$$\frac{n2^{n+1} - (n+1)2^n + 1}{2^n - 1}.$$

This is very close to $n - 1$.

Question 5. What is the average difference between the largest and smallest elements of a non-empty subset of $[n]$?

Solution. This was on the last assignment (average range).

Question 6. Determine the number of compositions of n into k parts with the given restrictions.

(a) Each part is a positive even integer.
(b) Each part is an element of $\{2, 3\}$
(c) Each part is at most i
(d) Exactly one part is odd, the rest are positive and even.

Solutions.

(a) $S = S_1 \times S_2 \times \cdots \times S_k$ where $S_i = \{2, 4, 6, \ldots\}$. Now

$$\Phi_{S_i}(x) = x^2 + x^4 + x^6 + \ldots = \frac{x^2}{1 - x^2}.$$

Therefore by the product lemma

$$\Phi_S(x) = x^{2k}(1 - x^2)^{-k}.$$

The binomial theorem gives

$$\Phi_S(x) = x^{2k} \sum_{j=0}^{\infty} \binom{-k}{j} (-1)^j x^{2j}.$$

3
Therefore the number of compositions we want is

\[[x^n] \Phi_S(x) = \left(\frac{-k}{n/2-k} \right) (-1)^{n/2-k} \]

provided \(n \) is even, and zero otherwise. Here we used \(2j + 2k = n \) in the sum.

(b) \(S = \{2, 3\} \times \{2, 3\} \times \cdots \times \{2, 3\} \) a total of \(k \) times. Since \(\Phi_{\{2,3\}}(x) = x^2 + x^3 \) we get

\[\Phi_S(x) = (x^2 + x^3)^k \]

from the product lemma. Then the binomial theorem gives

\[\Phi_S(x) = x^{2k} \sum_{j=0}^{k} \binom{k}{j} x^j. \]

Finally \([x^n] \Phi_S(x) = \left(\frac{k}{n-2k} \right) \) which is valid for \(2k \leq n \). If \(2k > n \) then the answer is zero.

(c) \(S = [i] \times [i] \times \cdots \times [i] \). Now \(\Phi_{[i]}(x) = x + x^2 + \ldots + x^i \) which is \(x(1 - x^i)/(1 - x) \) by finite geometric series. So

\[\Phi_S(x) = x^k(1 - x^i)^k(1 - x)^{-k}. \]

By the binomial theorem

\[\Phi_S(x) = x^k \sum_{r=0}^{k} \sum_{s=0}^{\infty} \binom{k}{r} (-x^i)^r \binom{-k}{s} (-x)^s. \]

To get \([x^n] \Phi_S(x) \) take \(ir + s + k = n \) i.e. take \(s = n - k - ir \). Then the answer is

\[\sum_{r=0}^{k} \binom{k}{r} (-1)^r \binom{-k}{n-k-ir} (-1)^{n-k-ir}. \]

Question 7. Determine the number of compositions of \(n \) into any number of parts, where each part is odd.

Solution. Let \(S(k) \) be the set of sequences of positive integers of length \(k \) and \(S = \bigcup_{k=0}^{\infty} S(k) \). Then

\[S(k) = S_1 \times S_2 \times \cdots \times S_k \]

where \(S_i = \{1, 3, 5, \ldots\} \) for all \(i \). Now

\[\Phi_{S_i}(x) = x + x^3 + x^5 + \ldots = \frac{x}{1-x^2} \]

since it is an infinite geometric series. By the product lemma

\[\Phi_{S(k)}(x) = \left(\frac{x}{1-x^2} \right)^k. \]
By the sum lemma
\[\Phi_S(x) = \sum_{k=0}^{\infty} \Phi_{S(k)}(x) = \sum_{k=0}^{\infty} \left(\frac{x}{1 - x^2} \right)^k \]
since it is an infinite geometric series. Simplifying, we get
\[\Phi_S(x) = \frac{1 - x^2}{1 - x - x^2}. \]
We can proceed by using recurrence equations or sums. By recurrence equations we get
\[a_n = a_{n-1} + a_{n-2} \]
where \(a_1 = 1 \) and \(a_2 = 1 \). Solving this (show all working as in the notes) we get the Fibonacci numbers
\[a_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1}. \]
Doing it by sums, we get
\[\Phi_S(x) = (1 - x^2) \sum_{j=0}^{\infty} (x + x^2)^j \]
since the sum of the geometric series is 1/(1 - x - x^2), and now
\[\Phi_S(x) = (1 - x^2) \sum_{j=0}^{\infty} \sum_{i=0}^{j} \binom{j}{i} x^i. \]
To get \([x^n] \Phi_S(x)\) split the sum in two:
\[\Phi_S(x) = \sum_{j=0}^{\infty} \sum_{i=0}^{j} \binom{j}{i} x^{i+j} - \sum_{j=0}^{\infty} \sum_{i=0}^{j} \binom{j}{i} x^{i+j+2}. \]
In the first let \(i = n - j \) and in the second let \(i = n - j - 2 \) to get
\[[x^n] \Phi_S(x) = \sum_{j=0}^{n} \binom{j}{n-j} - \sum_{j=0}^{n-2} \binom{j}{n-j-2}. \]

Question 8. How many sets \(\{x_1, x_2, \ldots, x_k\} \subset [n] \) have \(x_{i-1} + i \leq x_i \) for \(2 \leq i \leq k? \)

Solution. If we consider the sequence \((y_1, y_2, \ldots, y_{k+1}) = (x_1, x_2-x_1, \ldots, x_k-x_{k-1}, n-x_k)\) then we have a composition of \(n \) with \(k+1 \) part and where the \(i \)th part is at least \(i \) except that the last part is any non-negative integer (since \(n - x_k \geq 0 \)). Let
\[S = S_1 \times S_2 \times \ldots \times S_{k+1} \]
where \(S_{k+1} = \mathbb{Z}^+ \) and \(S_i = \{ i, i+1, i+2, \ldots \} \) for \(i \in [k] \). Then for \(i \in [k] \),

\[
\Phi_{S_i}(x) = x^i + x^{i+1} + \ldots = \frac{x^i}{1-x}
\]

and

\[
\Phi_{S_{k+1}}(x) = 1 + x + x^2 + \ldots = \frac{1}{1-x}.
\]

Therefore by the product lemma

\[
\Phi_S(x) = \prod_{i=1}^{k} \frac{x^i}{1-x} \cdot \frac{1}{1-x} = x^{\binom{k+1}{2}}(1-x)^{-k-1}.
\]

Here we used \(x^1 \cdot x^2 \cdots x^k = x^{1+2+\ldots+k} \) and \(1 + 2 + \ldots + k = \binom{k+1}{2} \). Now the binomial theorem gives

\[
\Phi_S(x) = x^{\binom{k+1}{2}} \sum_{j=0}^{\infty} \binom{-k-1}{j}(-x)^j.
\]

To get \([x^n]\Phi_S(x)\) put \(j = n - \binom{k+1}{2} \) so that

\[
[x^n]\Phi_S(x) = \binom{-k-1}{n - \binom{k+1}{2}}(-1)^{n-\binom{k+1}{2}}.
\]

Question 9 Let \(S \) denote the set of unordered lists (sets with repeated elements allowed) of positive integers, with weight function \(\omega(A) = x_1 + x_2 + \ldots + x_k \). Prove that

\[
\Phi_S(x) = \prod_{r=1}^{\infty} \frac{1}{1-x^r}.
\]

Solution. Since

\[
\frac{1}{1-x^r} = 1 + x^r + x^{2r} + \ldots
\]

we get that

\[
\Phi_S(x) = (1 + x + x^2 + \cdots)(1 + x^2 + x^4 + \cdots)(1 + x^3 + x^6 + \cdots)(1 + x^4 + x^8 + \cdots) \cdots.
\]

Then \([x^n]\Phi_S(x)\) should be the number of sets of integers whose sum of elements is \(n \). Now each a term from the \(r \)th bracket has the form \(x^{ir} \) so

\[
n = m_1 + 2m_2 + 3m_3 + \ldots + rm_r.
\]

This means we are writing \(n \) as a sum of elements in the list \(111111222222333333 \cdots rrrrrr \) where \(i \) appears \(m_i \) times as required.
Question 10. Determine the number of binary strings of length \(n \) with the given restrictions.

(a) The strings have only blocks of odd length.
(b) The strings do not contain 011.
(c) The strings do not contain 101 or 010.
(d)* The strings do not contain 101.

Solutions.

(a) The expression

\[
S = (\{\varepsilon\} \cup \{0\}\{00\})^*(\{1\}\{11\})^*(\{0\}\{00\})^*(\{\varepsilon\} \cup \{1\}\{11\})^*
\]

uniquely creates all the strings we want. The generating function is

\[
\Phi_S(x) = \left(1 + \frac{x}{1-x^2}\right)^2 \frac{1}{1 - \left(\frac{x}{1-x^2}\right)^2} = \frac{(1 + x - x^2)^2}{1 - 3x^2 + x^4}.
\]

By the binomial theorem

\[
\Phi_S(x) = (1 + x - x^2)^2 \sum_{j=0}^{\infty} (3x^2 - x^4)^j = (1 + x - x^2)^2 \sum_{j=0}^{\infty} \sum_{i=0}^{j} (3x^2)^i \binom{j}{i} \left(-\frac{x^2}{3}\right)^i.
\]

It is particularly unpleasant to find \(a_n = [x^n]\Phi_S(x) \) from this but it can be done. The other way is to use the recurrence

\[
a_n - 3a_{n-2} + a_{n-4} = 0.
\]

Note that \(a_0 = 1, a_1 = 1, a_2 = 2, a_3 = 4 \) (since 111, 000, 101, 010 are the strings of length three with all blocks of odd length). The characteristic equation is \(x^4 - 3x^2 + 1 = 0 \). The roots are

\[
\sqrt{\frac{3 + \sqrt{5}}{2}} \quad \text{and} \quad -\sqrt{\frac{3 + \sqrt{5}}{2}}
\]

which means

\[
a_n = c_1 \sqrt{\frac{3 + \sqrt{5}}{2}}^n - c_2 \sqrt{\frac{3 - \sqrt{5}}{2}}^n + c_3 \sqrt{\frac{3 - \sqrt{5}}{2}}^n - c_4 \sqrt{\frac{3 + \sqrt{5}}{2}}^n.
\]

Here \(c_1, c_2, c_3, c_4 \) are constants to be determined using \(a_0, a_1, a_2, a_3 \).

(b) Generating function is

\[
\frac{1}{1 - 2x + x^3} = \sum_{j=0}^{\infty} (2x - x^3)^j = \sum_{j=0}^{\infty} \sum_{i=0}^{j} (2x)^i (-x^2/2)^i \binom{j}{i}.
\]

The coefficient of \(x^n \) is

\[
\sum_{i=0}^{n} \binom{n-2i}{i} (-1)^i 2^{n-3i}.
\]
Alternative: use recurrence equation \(a_n = 2a_{n-1} - a_{n-3} \) with initial conditions \(a_0 = 1, a_1 = 2, \) and \(a_2 = 4. \) The characteristic equation is \(\alpha^3 - 2\alpha^2 + 1 = 0 \) and \(\alpha = 1 \) is an obvious root. Then we get \((\alpha - 1)(\alpha^2 - \alpha - 1) = 0\) so \(\alpha = \frac{1}{2}(1 \pm \sqrt{5}) \). Then

\[
a_n = c_1 + c_2 \left(\frac{1 + \sqrt{5}}{2} \right)^n + c_3 \left(\frac{1 - \sqrt{5}}{2} \right)^n.
\]

Finally \(c_1, c_2, c_3 \) are determined from \(a_0 = 1, a_1 = 2, \) and \(a_2 = 4. \) Thus

\[
c_1 + c_2 + c_3 = 1 \quad c_1 + c_2 \left(\frac{1 + \sqrt{5}}{2} \right) + c_3 \left(\frac{1 - \sqrt{5}}{2} \right) = 2 \quad c_1 + c_2 \left(\frac{1 + \sqrt{5}}{2} \right)^2 + c_3 \left(\frac{1 - \sqrt{5}}{2} \right)^2 = 4.
\]

Solving these equations (e.g. by linear algebra) we get \(c_1 = -1 \) and \(c_2 = (5 + 2\sqrt{5})/5 \) and \(c_3 = (5 - 2\sqrt{5})/5 \). Therefore

\[
a_n = 1 + \frac{5 + 2\sqrt{5}}{5} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{5 - 2\sqrt{5}}{5} \left(\frac{1 - \sqrt{5}}{2} \right)^n.
\]

(c) These strings are uniquely created by

\[
S = \{0\}^*\{11\}\{1\}^*\{00\}\{0\}^*\{1\}^*\{00\}\{0\}^*\{11\}\{1\}^*\{0\}^*.
\]

The generating function is

\[
\Phi_S(x) = \frac{1}{(1-x)^2} \cdot \frac{1}{1 - x^4/(1-x)^2} = \frac{1}{1 - 2x + x^2 - x^4} + \frac{x(1-x)^2}{1 - 2x + x^2 - x^4} = \frac{1 + x - 2x^2 + x^3}{1 - 2x + x^2 - x^4}.
\]

Opting for recurrences, we get \(a_n - 2a_{n-1} + a_{n-2} - a_{n-4} = 0 \) and \(a_0 = 1, a_1 = 2, a_2 = 4, \) and \(a_3 = 6. \) The characteristic equation has four distinct roots: \((1 \pm \sqrt{5})/2\) and \((1 \pm \sqrt{3}i)/2\). So

\[
a_n = c_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + c_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n + c_3 \left(\frac{1 + \sqrt{3}i}{2} \right)^n + c_4 \left(\frac{1 - \sqrt{3}i}{2} \right)^n.
\]

Use the initial conditions now to find \(c_1, c_2, c_3, c_4. \)