Solution to Additional Problem 1(b)

We want to find all extremes of \(f(x, y, z) = x^3 + y^3 + z^3 - 3xyz \). First we determine the critical points of \(f \): since \(\nabla f = (3x^2 - 3yz, 3y^2 - 3xz, 3z^2 - 3xy) \), critical points occur when

\[
\begin{align*}
3x^2 &= 3yz & (1) \\
3y^2 &= 3xz & (2) \\
3z^2 &= 3xy. & (3)
\end{align*}
\]

Multiplying (1) by \(x \) and (2) by \(y \) and subtracting the results we get \(3(x^3 - y^3) = 3xyz - 3xyz = 0 \) so \(y = x \). Similarly, we get \(y = z \) using (2) and (3) so \(x = y = z \). Therefore the critical points are all points of the form \((x, x, x) \).

We use the second derivative test to determine the nature of the critical points. We have

\[
\begin{align*}
f_{xx} &= 6x & f_{xy} &= -3z & f_{xz} &= -3y \\
f_{yy} &= 6y & f_{yz} &= -3x & f_{zz} &= 6z.
\end{align*}
\]

At the points \((x, x, x) \) this gives the Hessian matrix

\[
\begin{pmatrix}
6x & -3x & -3x \\
-3x & 6x & -3x \\
-3x & -3x & 6x
\end{pmatrix}
\]

The nature of the critical points is determined by the signs of the determinants of the matrices

\[
H_3 = \begin{pmatrix}
6x & -3x & -3x \\
-3x & 6x & -3x \\
-3x & -3x & 6x
\end{pmatrix} \quad H_2 = \begin{pmatrix}
6x & -3x \\
-3x & 6x
\end{pmatrix} \quad H_1 = (6x).
\]

We note that \(\det(H_1) = 6x \), \(\det(H_2) = 27x^2 \), \(\det(H_3) = 162x^3 \). If \(x > 0 \), then these are all positive so \((x, x, x) \) represents a minimum for \(f \). If \(x < 0 \), then these are alternately negative and positive, which means \((x, x, x) \) represents a maximum for \(f \). If \(x = 0 \), then the second derivative test fails. Now observe \(f(0, 0, 0) = 0 \), whereas \(f(x, 0, 0) = x^3 \) can be negative or positive near \((0, 0, 0) \). This means \((0, 0, 0) \) is neither a minimum nor a maximum of \(f \).
Solution to Additional Problem 2(e)

We want to find all extreme points of \(f(x, y) = e^{-x^2} \sin(x^2 + y^2) \). First we find all critical points. Note that
\[
\nabla f = (-2xe^{-x^2} \sin(x^2 + y^2) + 2xe^{-x^2} \cos(x^2 + y^2), 2ye^{-x^2} \cos(x^2 + y^2)).
\]
This is zero when
\[
\begin{align*}
 x &= 0 \quad \text{or} \quad \sin(x^2 + y^2) = \cos(x^2 + y^2) \quad \text{and} \\
 y &= 0 \quad \text{or} \quad \cos(x^2 + y^2) = 0
\end{align*}
\]
where \(k \in \mathbb{Z} \). Therefore
\[
\begin{align*}
 x &= 0 \quad \text{or} \quad x^2 + y^2 = \frac{\pi}{4} + k\pi \quad \text{and} \\
 y &= 0 \quad \text{or} \quad x^2 + y^2 = \frac{\pi}{2} + k\pi
\end{align*}
\]
So the critical points are
\[
(0, 0) \quad (0, \sqrt{\frac{\pi}{2} + k\pi}) \quad (\sqrt{\frac{\pi}{4} + k\pi, 0})
\]
where we insist \(k \in \mathbb{Z} \) and \(k \geq 0 \). Next we determine the nature of these critical points. We have
\[
\begin{align*}
f_{xx} &= (2 - 4x^2)e^{-x^2}(\sin(x^2 + y^2) - \cos(x^2 + y^2)) - 4x^2e^{-x^2}(\sin(x^2 + y^2) + \cos(x^2 + y^2)) \\
f_{yy} &= 2e^{-x^2}\cos(x^2 + y^2) - 2ye^{-x^2}\sin(x^2 + y^2) \\
f_{xy} &= -4xye^{-x^2}\cos(x^2 + y^2) - 4xye^{-x^2}\sin(x^2 + y^2).
\end{align*}
\]
We immediately observe \(f_{xy} = 0 \) at all critical points. At \((0, 0)\) we have \(f_{xx} = -2 \) and \(f_{yy} = 2 \). Therefore the Hessian matrix is
\[
H = \begin{pmatrix}
-2 & 0 \\
0 & 2
\end{pmatrix}.
\]
Since \(H \) is negative definite, this means \((0, 0)\) represents a maximum of \(f \), and \(f(0, 0) = 0 \). Next we check the critical points \((0, \sqrt{\pi/2 + k\pi})\). If \(k \) is even, we get \(\sin(x^2 + y^2) = \sin(\pi/2 + k\pi) = 1 \) at this critical point. Therefore for \(k \) even:
\[
H = \begin{pmatrix}
2 & 0 \\
0 & -2\sqrt{\pi/2 + k\pi}
\end{pmatrix}.
\]
This matrix is negative definite so \((0, \sqrt{\pi/2 + k\pi})\) represents a local maximum of \(f\), namely \(f(0, \sqrt{\pi/2 + k\pi}) = 1\). If \(k\) is odd, we get \(\sin(x^2 + y^2) = \sin(\pi/2 + k\pi) = -1\) at this critical point. Therefore for \(k\) odd,

\[
H = \begin{pmatrix}
2 & 0 \\
0 & 2\sqrt{\pi/2 + k\pi}
\end{pmatrix}.
\]

So this is a positive definite matrix, and therefore \((0, \sqrt{\pi/2 + k\pi})\) represents a local minimum of \(f\), namely \(f(0, \sqrt{\pi/2 + k\pi}) = -1\). Moving on to the critical points \((\sqrt{\pi/4 + k\pi}, 0)\), we observe that if \(k\) is even then \(\sin(x^2 + y^2) = \cos(x^2 + y^2) = 1/\sqrt{2}\) at this critical point. Therefore, if \(k\) is even,

\[
H = \begin{pmatrix}
-4\sqrt{2}(\pi/4 + k\pi)e^{-\pi/4-k\pi} & 0 \\
0 & \sqrt{2}e^{-\pi/4-k\pi}
\end{pmatrix}.
\]

This matrix is negative definite, so \(f(\sqrt{\pi/4 + k\pi}, 0) = \frac{1}{\sqrt{2}}e^{-\pi/4-k\pi}\) is a local maximum if \(k\) is even. We observe that if \(k\) is odd then \(\sin(x^2 + y^2) = -\cos(x^2 + y^2) = -1/\sqrt{2}\) at this critical point. Therefore, if \(k\) is odd,

\[
H = \begin{pmatrix}
-\sqrt{2}(2 - 4(\pi/4 + k\pi))e^{-\pi/4-k\pi} & 0 \\
0 & \sqrt{2}e^{-\pi/4-k\pi}
\end{pmatrix}.
\]

This matrix is positive definite, so \(f(\sqrt{\pi/4 + k\pi}, 0) = -\frac{1}{\sqrt{2}}e^{-\pi/4-k\pi}\) represents a local minimum if \(k\) is odd. If we want the absolute maximum and minimum of \(f\), then the absolute minimum of \(-1\) is at \((0, \sqrt{\pi/2 + k\pi})\) for \(k\) even, and the absolute maximum is \(\frac{1}{\sqrt{2}}e^{-\pi/4-k\pi}\) which occurs at \((\sqrt{\pi/4 + k\pi}, 0)\). A picture is shown below: