Course Notes

Part VI

Probabilistic Combinatorics

and

Algorithms

J. A. Verstraete
Department of Mathematics
University of California San Diego
9500 Gilman Drive
La Jolla California 92037-0112

jacques@ucsd.edu
Talagrand’s Inequality

An isoperimetric inequality is an inequality which relates the volume of a set to its surface area. In this section, we are interested in isoperimetric inequalities which state that if A is a subset of a metric space, then the set of points at distance at least t from A is large relative to A. There is now a very large body of research on isoperimetric inequalities and their applications to combinatorics, probability, geometric functional analysis, and so forth. We therefore concentrate our attention on the discrete cube, Q_n. One of the fundamental isoperimetric inequalities was established by Harper (1966):

Theorem 1 Let $A \subset Q_n$, and let $A(s) = \{|x \in Q_n : d_H(x, A) \leq s\}$ and $B_t = \{|x \in Q_n : d_H(x, \emptyset) \leq t\}$. If $|A| \geq |B_t|$ then $|A(s)| \geq |B_t(s)|$.

Note that $B_t(s) = B_{t+s}$ and $|B_t| = \sum_{k \leq t} \binom{n}{k}$, and d_H is the Hamming metric on Q_n, namely $d_H(x, y) = |x \triangle y|$. Accordingly, the Hamming distance between sets $A, B \subset Q_n$ is

$$d_H(A, B) = \min_{x \in A, y \in B} |x \triangle y|.$$

Harper’s Inequality can be read as saying that either A is small or $|A(s)|$ is small, where $A(s)$ is the set of elements of Q_n at distance more than s from A. If we choose each coordinate in Q_n independently with probability $\frac{1}{2}$, then we get a probabilistic version of Harper’s Inequality, involving the binomial expression for $|B_{t+s}|$ and $|B_t|$. Rather than stating this inequality, we derive a cleaner statement of probability using the Lipschitz Inequality for martingales. The proof relies on the observation that $d_H(x, A)$ is 1-Lipschitz, and since that is all that is needed, we can think later of more general metrics that $d_H(x, A)$.

Theorem 2 If $A \subset Q_n$ and $B = \overline{A(t)}$, then

$$\frac{|A|}{2^n} \cdot \frac{|B|}{2^n} \leq e^{-\frac{t^2}{n}}.$$

Proof The expression on the left is a product of two probabilities. Now the function $f(x) = d_H(x, A)$ is 1-Lipschitz. By the Lipschitz Inequality of Chapter 6, with $c_i = 1$ for $i \in [n]$, $\lambda > 0$, and $\mu = \mathbb{E}(f)$, $\mathbb{P}(f - \mu \geq \lambda) \leq \exp(-\frac{2\lambda^2}{n})$. Now $\mathbb{P}(A) = \mathbb{P}(f = 0)$ and $\mathbb{P}(B) = \mathbb{P}(f \geq t)$ so

$$\mathbb{P}(A) \mathbb{P}(B) = \mathbb{P}(f = 0) \mathbb{P}(f \geq t)$$

$$\leq \mathbb{P}(f - \mu \leq -\mu) \mathbb{P}(f - \mu \geq t - \mu)$$

$$\leq e^{-\frac{2\mu^2}{n}} \cdot \frac{2(t - \mu)^2}{n}$$

$$\leq e^{-\frac{t^2}{n}}.$$

In the last line we note that $\mu = \frac{1}{2}t$ gives a maximum. This completes the proof.
In general, isoperimetric inequalities, such as Theorem 2, also give concentration inequalities. For example, if X is a 1-Lipschitz random variable on Q_n and each co-ordinate is zero or one with probability $\frac{1}{2}$, then for any number s and any $t > 0$ we have

$$\mathbb{P}(X \leq s)\mathbb{P}(X \geq s + t) \leq e^{-\frac{t^2}{n}}.$$

Indeed, we just let A be the event $X \leq s$ and let B be the event $X \geq s + t$. Then $B \subset \overline{A(t)}$, and an application of Theorem 2 gives the above inequality.

Talagrand’s inequality (1995) is an isoperimetric equality on a product space but with a different but very powerful notion of distance. Let $(Ω_i, F_i, P_i)$ be probability spaces and let $Ω = \prod_{i=1}^{n} Ω_i$ be endowed with the product measure, P. The Talagrand distance from $x \in Ω$ to a set $A \subset Ω$ is

$$d_T(x, A) = \sup_{\|α\| = 1} \min_{y \in A} \sum_{i: x_i \neq y_i} α_i.$$

Here the supremum is over all unit vectors $α \in \mathbb{R}^n$ on the unit sphere $S(1)$, with the Euclidean norm. One of the most useful facts is that in the Talagrand definition of distance, the distance from x to A can be checked by allowing $α$ to depend on x – we can choose our favourite $α$ for each x to get bounds on the distance. The following further important facts are straightforward to prove:

- For all $x \in Ω$ and for all $A \subset Ω$,
 $$d_T(x, A) \leq d_H(x, A) \leq \sqrt{n}d_T(x, A).$$

- If $Ω = Q_n$, then the Talagrand distance from x to A is the Euclidean distance from x to the convex hull of A in \mathbb{R}^n.

So from the first statement, $d_T(x, A) \leq \ell$ implies there exists $y \in A$ such that x and y differ in at most $\ell\sqrt{n}$ co-ordinates.

The original form of Talagrand’s inequality, which is now one of many, is the following. Let $A_T(s) = \{x \in Q_n : d_T(x, A) \leq s\}$ – this is the analogue of $A(s)$ for the Hamming metric. By definition, $A_T(0) = A$.

Theorem 3 Let t be a positive real number and let $Ω$ be a product probability space with product measure P. Let $A \subset Ω$ and let $B = \overline{A_T(t)}$. Then

$$\mathbb{P}(A) \cdot \mathbb{P}(B) \leq e^{-t^2/4}.$$

An equivalent geometric definition of Talagrand’s Inequality is as follows: let $P(y, x)$ denote the set of zero-one vectors z of length n which are one on those coordinates i for which $x_i \neq y_i$. For a set A and a vector $x \in Ω$, let $P(A, x)$ be the union of all $P(y, x)$ with $y \in A$. Here is an equivalent definition of $d_T(x, A)$. Denote by $\text{conv} S$ the convex hull of a set $S \subset \mathbb{R}^n$.

\[2\]
Lemma 4 Let $A \subset \Omega$ and let $x \in \Omega$. Then
\[d_T(x, A) = \min \{ \| z \| : z \in \text{conv} P(A, x) \}, \]
where $\text{conv} X$ denotes the convex hull of a set $X \subset \mathbb{R}^n$.

Proof \triangleright For the first statement, let z^\star achieve the minimum. Recall
\[d_T(x, A) = \sup_{\| \alpha \| = 1} \min_{z \in P(A, x)} \langle \alpha, z \rangle. \]
First we claim that there is a unit vector α such that $\langle \alpha, z \rangle \geq \| z^\star \|$ for all $z \in P(A, x)$. This shows that $\| z^\star \|$ is a lower bound for the Talagrand distance. By definition of z^\star, the hyperplane perpendicular to z^\star separates $\text{conv} P(A, x)$ from the origin, so $\langle z, z^\star \rangle \geq \langle z^\star, z^\star \rangle$ for any $z \in \text{conv} P(A, x)$. Taking $\alpha = z^\star/\| z^\star \|$, we have $\| \alpha \| = 1$ and this proves the claim. To prove the lemma, we show that $\| z^\star \|$ is an upper bound for the Talagrand distance. To see this, note that there are positive real numbers λ_i summing to one such that $z^\star = \sum_{i=1}^{n} \lambda_i z_i$ where $z_i \in P(A, x)$. Taking the inner product with any α: $\| \alpha \| = 1$ we get
\[\| z^\star \| \geq \langle \alpha, z^\star \rangle = \sum_{i=1}^{n} \lambda_i \langle \alpha, z_i \rangle \]
which means that one of the inner products in the sum is at most $\| z^\star \|$. \hfill \blacksquare

Let $x\omega$ denote the concatenation of a vector $x \in \prod_{i=1}^{n-1} \Omega_i$ with $\omega \in \Omega_n$.

Lemma 5 Let $\Omega = \prod_{i=1}^{n} \Omega_i$ be a product probability space, and $x \in \Omega$. Define $A_{\omega} = \{ x : x\omega \in A \}$ where $\omega \in \Omega_n$, and let $B = \bigcup \{ A_z : z \in \Omega_n \}$. Then for all $\lambda \in [0, 1]$,
\[d_T(x\omega, A)^2 \leq (1 - \lambda)^2 + \lambda d_T(x, A_{\omega})^2 + (1 - \lambda) d_T(x, B)^2. \]

Proof \triangleright Since $y \in P(B, x)$ implies $y1 \in P(A, x\omega)$ and $z \in P(A_{\omega}, x)$ implies $z0 \in P(A, x\omega)$, the same applies when we take convex hulls. In other words, for any $y \in \text{conv} P(B, x)$ and $z \in \text{conv} P(A_{\omega}, x)$, we have $((1 - \lambda)y + \lambda z, 1 - \lambda) \in \text{conv} P(A, x\omega)$. Consequently,
\[d_T(x\omega, A)^2 \leq (1 - \lambda)^2 + \|(1 - \lambda)y + \lambda z\|^2 \leq (1 - \lambda)^2 + (1 - \lambda)\|y\|^2 + \lambda\|z\|^2. \]
We now take y and z which achieve equality in Lemma 4. \hfill \blacksquare

We combine the above two lemmas to prove Talagrand’s Inequality.
1.1 Proof of Talagrand’s Inequality

Let \(X(x) = d_T(x, A) \). We show, by induction on \(n \) that \(\mathbb{P}(A) \cdot \mathbb{E}(e^{X^2/4}) \leq 1 \). This is sufficient to prove Talagrand’s inequality, since we can apply Markov’s inequality to obtain

\[
\mathbb{P}(A) \cdot \mathbb{P}(\bar{A}_T(t)) = \mathbb{P}(A) \cdot \mathbb{P}(X > t) \leq \mathbb{P}(A) \cdot \mathbb{E}(e^{X^2/4})e^{-t^2/4} \leq e^{-t^2/4}.
\]

For \(n = 1 \), the result follows easily. Suppose \(n > 1 \). By Lemma 5,

\[
\mathbb{E}(e^{X^2/4}) = \int e^{\frac{1}{2n}d_T^2(x, \omega)}dx \omega
\]

\[
\leq \min_{\lambda \in [0,1]} e^{(1-\lambda)^2/4} \int [e^{\frac{1}{2n}d_T(x, \omega)}]^\lambda \cdot [e^{\frac{1}{2n}d_T(x, B)}]^{1-\lambda}
\]

\[
\leq \min_{\lambda \in [0,1]} e^{(1-\lambda)^2/4} \left[\int e^{\frac{1}{2n}d_T(x, \omega)}^\lambda \right] \cdot \left[\int e^{\frac{1}{2n}d_T(x, B)}^{1-\lambda} \right] \text{ Hölder’s Inequality}
\]

\[
\leq \min_{\lambda \in [0,1]} e^{(1-\lambda)^2/4} \mathbb{P}(A_\omega)^{-\lambda} \mathbb{P}(B)^{-1-\lambda} \text{ by induction.}
\]

\[
= \frac{1}{\mathbb{P}(B)} \cdot \min_{\lambda \in [0,1]} e^{(1-\lambda)^2/4} \left(\frac{\mathbb{P}(A_\omega)}{\mathbb{P}(B)} \right)^{-\lambda}.
\]

Let \(\lambda = 1 + 2 \log \frac{\mathbb{P}(A_\omega)}{\mathbb{P}(B)} \) so that the above expression is (after a calculation) at most

\[
\frac{\mathbb{P}(A_\omega)}{\mathbb{P}(B)} \left(2 - \frac{\mathbb{P}(A_\omega)}{\mathbb{P}(B)} \right).
\]

Since \(\mathbb{P}(A_\omega) \leq \mathbb{P}(B) \) and \(\mathbb{P}(A) \leq \mathbb{P}(B) \), this expression is at most \(1/\mathbb{P}(A) \), as required. \(\blacksquare \)

2 Certifiable functions

Let \(\Omega = \prod_{i=1}^n \Omega_i \) be a product space, let \(X \) be a random variable on \(\Omega \) and let \(f : \mathbb{N} \rightarrow \mathbb{N} \). Then \(X \) is \(f \)-certifiable if the event \(X(\omega) \geq s \) can be verified by checking at most \(f(s) \) co-ordinates of \(\omega \). In other words, there is a set of \(f(s) \) co-ordinates such that any \(\omega' \) equal to \(\omega \) on these co-ordinates also has \(X(\omega') \geq s \).

Theorem 6 For \(s, t \in \mathbb{R} \), and any \(f \)-certifiable \(k \)-Lipschitz random variable \(X \) on \(\Omega = \prod_{i=1}^n \Omega_i \),

\[
\mathbb{P}(X \leq s - kt \sqrt{f(s)}) \cdot \mathbb{P}(X \geq s) \leq e^{-t^2/4}.
\]

Proof Let \(A \) be the event \(X < s - kt \sqrt{f(s)} \). By Talagrand’s inequality, we only need to prove that the event \(X \geq s \) is contained in \(A_T(t) \). Suppose, for a contradiction, that there exists \(\omega \in A_T(t) \) such that \(X(\omega) \geq s \). Since \(X \) is \(f \)-certifiable, there is a set \(I \) of indices of size \(m \leq f(s) \) which certifies \(X \geq s \). By taking \(a_i = 1/\sqrt{m} \) for \(i \in I \) in the definition of \(d_T(x, A) \), we deduce that there exists an \(\omega' \in A \) differing from \(\omega \) in at most \(t \sqrt{f(s)} \) co-ordinates of \(I \). Now suppose \(\omega'' \) agrees with \(\omega \) on \(I \) and agrees with \(\omega' \) outside of \(I \), then \(X(\omega'') \geq s \) because \(X \) is \(f \)-certifiable.
Now ω'' and ω' differ in at most $t \sqrt{f(s)}$ co-ordinates, all of which are in I. Since X is k-Lipschitz, this means
\[X(\omega') \geq X(\omega'') - kt \sqrt{f(s)} \geq s - kt \sqrt{f(s)}. \]
However, this means $\omega' \not\in A$, which is a contradiction. The continuity of $e^{-t^2/4}$ ensures that $X < s - kt \sqrt{f(s)}$ can be replaced by $X \leq s - kt \sqrt{f(s)}$.

A similar inequality is valid if we replace $s - kt \sqrt{f(s)}$ with $s + kt \sqrt{f(s)}$ in the theorem. In general, the parameter s in the theorem is taken to be the median of X, so that Talagrand’s inequality gives an upper bound for the probability of deviation below the median of a random variable. Practically speaking, the median is more difficult to determine than the mean, but the following lemma says that the median $\mathbb{M}(X)$ of an f-certifiable k-Lipschitz random variable X and its mean are close together.

Lemma 7 Let X be a random variable, and let Ω be a product space with product probability measure \mathbb{P}. Suppose X is k-Lipschitz and $f(s) = ds$ certifiable. Then there is a constant $\gamma > 0$ such that
\[|\mathbb{E}(X) - \mathbb{M}(X)| \leq \gamma k \sqrt{d \mathbb{E}(X)}. \]

The proof of this lemma is left as an exercise.

2.1 Monotone subsequence problem

Let σ be a sequence (permutation) of distinct letters in $[n]$ of length n. A natural question is the length of a longest increasing or decreasing subsequence of σ. Such a sequence is called monotone. Erdős and Szekeres proved that the length of a longest monotone subsequence in any sequence σ has length at least \sqrt{n} (we leave this as an exercise). Now suppose we take a permutation of $[n]$ uniformly and randomly, and let X_n denote the length of a longest monotone subsequence. We show that X_n is concentrated around its mean. In fact, this follows from Talagrand’s inequality. First, we generate our random permutation by taking n real numbers y_1, y_2, \ldots, y_n uniformly from the interval $[0,1]$, and then order them in increasing order. This gives a permutation of $[n]$ according to the order of the subscripts in the increasing order of the y_is, because the chance that two of real numbers are equal is zero. To apply Theorem 6, note that $X_n \geq s$ if and only if there is a monotone increasing subsequence of σ of length s, which can be certified by looking at the s real numbers corresponding to that subsequence. Also, upon changing one of the real numbers, the value of X_n changes by at most one, so X_n is 1-Lipschitz. Therefore, by Theorem 6, if $\omega(n) \to \infty$, then by Lemma 7
\[\mathbb{P}(|X_n - \mathbb{E}(X_n)| > \omega(n) \sqrt{\mathbb{E}(X)}) \to 0. \]

What is the expected length of a longest monotone subsequence? It turns out that $\mathbb{E}(X_n) \sim 2\sqrt{n}$, as shown by Vershik and Kerov, but no short proof of this fact is known. Much more precise statements are now known about the distribution of X_n: the limiting distribution was found by Baik, Deift and Johansson. A survey of this and related problems is given by Stanley.
2.2 Disjoint Triangles

For a vertex v in a graph G, let $\triangle(G)$ denote the maximum number of edge-disjoint triangles in G. In the random graph G with n vertices and edges appearing independently with probability $p = \lambda/n$, $\triangle(G)$ is a 1-Lipschitz function and is $f(s) = 3s$ certifiable: revealing the $3k$ edges of k edge-disjoint triangles certifies $\triangle(G) \geq k$, and any graph agreeing with G on these edges also has $\triangle(G) \geq k$. By Talagrand’s Inequality, if m is the median of $\triangle(G)$,

$$P(\triangle(G) \leq m - t \sqrt{3m}) \leq 2e^{-\frac{1}{4}t^2}.$$

It turns out that if $\lambda \rightarrow \infty$, then $E(\triangle(G)) \sim \frac{1}{6}pn^2$. So using Lemma 7, G almost surely has a collection of edge-disjoint triangles covering most of its edges.

2.3 Colouring Graph Powers

Brook’s Theorem (1941) states that the (vertex) chromatic number of a graph G is at most its maximum degree, unless G is an odd cycle or a complete graph. This leads to the following question: what if G is far from complete and the maximum degree Δ of G is large? Can we say that G has chromatic number much less than Δ? The following theorem of Alon, Krivelevich and Sudakov (1999) shows that this is so if the neighbourhoods of vertices are not too dense:

Theorem 8 Let G be a graph of maximum degree Δ, and suppose that the number of triangles on each vertex of G is less than Δ^2/t, where $2 \leq t \leq \Delta^2$. Then G has chromatic number at most $c\Delta/\log t$ for some absolute constant c.

The kth power of a graph G is the graph obtained by joining all pairs of vertices of G at distance at most k. If G has maximum degree Δ, then G^k potentially has maximum degree

$$\sum_{i=1}^{k} \Delta(\Delta - 1)^{i-1} \approx \Delta^k.$$

In the next theorem, we show that if G contains no short cycles, then we can improve Brooke’s Theorem on G^k:

Theorem 9 Let G be a graph of girth at least $3k + 1$ and maximum degree Δ, and let G^k be the kth power of G. Then the

$$\chi(G^k) \ll \frac{\Delta^k}{\log \Delta}.$$

Proof One verifies that the maximum possible chromatic number of G cannot be more than the given upper bound, by Theorem 8. Now we need a graph G of maximum degree Δ such that the chromatic number of G^k is at least $c\Delta^k/\log \Delta$ for some constant $c > 0$. In fact, all we need is that G^k contains no independent set of size more than $n \log \Delta/c\Delta^k$. Such a graph is constructed using the probabilistic method.

Let $G_{n,p}$ denote the model of random graphs with edge-probability $p = \frac{d}{2n}$, where d is fixed. For a set S of r vertices of $G_{n,p}$, let $X(S)$ denote the maximum number of internally disjoint paths
of length k with endpoints in S, and with no other vertices in S. Note that S is an independent set in G^k if and only if no path of length at most k has both endpoints in S. Now the expected number of paths of length k with endpoints in S is exactly

$$P = \binom{r}{2} (n - r)(n - r - 1) \cdots (n - r - k + 2)p^k.$$

Put $r = c_0 n \log d / d^k$, where c_0 is to be chosen later. Then the expected number of pairs of paths which share at least one common internal vertex is much smaller than P^2, so we can delete the shared internal vertices of paths to obtain a collection of at least

$$\frac{P}{2} \geq c_0^2 n (\log d)^2 / 2^{k+2} d^k$$

internally disjoint paths of length k with both endpoints in S, and no other vertices in common. Thus for all sets S of r vertices, $E(X(S)) \geq \frac{P}{2}$.

Now $X = X(S)$ changes by at most one upon deleting or adding an edge to G, so X is 1-Lipschitz. Furthermore, X is f-certifiable, with $f(s) = ks$. Therefore, by Theorem 6, for any s and $t > 0$,

$$\mathbb{P}(X \leq s - t\sqrt{f(s)}) \cdot \mathbb{P}(X \geq s) \leq e^{-t^2/4}.$$

By Lemma 7, there is an absolute constant $\gamma > 0$ such that

$$|\mathbb{E}(X) - \mathbb{M}(X)| \leq \gamma k \mathbb{E}(X).$$

Let $s = \mathbb{M}(X)$. It follows from the above inequality that there is a constant c_1 such that

$$\mathbb{P}(X \leq \frac{P}{8}) \leq 2e^{-c_1 n (\log d)^2 / d^k}.$$

Here c_1 depends only on k. It is not hard to check that

$$2e^{-c_1 n (\log d)^2 / d^k} \left(\frac{n}{r} \right) \to 0$$

as n tends to infinity. So the probability that there exists a set S of r vertices which does not support at least $\frac{P}{8}$ internally disjoint paths tends to zero. In other words, a.a.s every set S of size r has at least $\frac{P}{8}$ internally disjoint paths of length k with two vertices in S and no other vertices in common.

Now we alter $G_{n,p}$: delete one vertex from each cycle of length at most $3k$ in $G_{n,p}$ and each vertex of degree greater than d in $G_{n,p}$. The expected number of vertices deleted is at most $\frac{1}{3}(n2^{-d/16} + d^{3k})$, using the Chernoff bound for the probability that a fixed vertex has degree greater than d, so by Markov’s inequality we may delete $m = n2^{-d/16} + d^{3k}$ vertices to obtain a graph G of girth at least $3k + 1$ and maximum degree d with probability at least $3/4$. A.a.s, every set S of r vertices has $\frac{P}{8}$ internally disjoint paths in G of length k with endpoints in S. Since $\frac{P}{8} > m$, this means that at least one path survives the deletion for any set S, and therefore these two vertices of S are joined in G^k. In particular, G^k contains no independent set of size r, as required.
The girth condition in this theorem cannot be dropped. For example, it is known that there are $(q+1)$-regular bipartite graphs P_q of girth six, with $q^2 + q + 1$ vertices in each part such that each pair of vertices in one part has a common neighbour, whenever q is a prime power. Then P^2_q is the union of two complete graphs of order $q^2 + q + 1$ on each part of P_q together with P_q itself. So the chromatic number of G is at least $q^2 + q + 1$, whereas the maximum degree in G is exactly $(q + 1)^2$. So the theorem required girth at least seven in the case $k = 2$. Alon and Mohar (2002) proved that if the girth of G is at most $3k + 1$, then G^k might have chromatic number at least $\Delta^k - \Delta + 1$.