Clique Partitions of Dense Graphs

October 2, 2006

Michael Cavers
Dept of Combinatorics & Optimization
University of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1

Jacques Verstraëte
Dept of Mathematics & Statistics
McGill University
805 Sherbrooke Street West
Montreal, Quebec, Canada H2A 3K6

Abstract

In this paper, we prove that for any forest \(F \subset K_n \), the edges of \(E(K_n) \setminus E(F) \) can be partitioned into \(O(n \log n) \) cliques. This extends earlier results on clique partitions of the complement of a perfect matching and of a hamiltonian path in \(K_n \). We also show that if a graph \(G \) has maximum degree \(\Delta \), then the edges of \(E(K_n) \setminus E(G) \) can be partitioned into roughly \(n^{3/2} \Delta^{1/2} \log^2 n \) cliques provided there exist Steiner systems with certain parameters. Furthermore, as \(n \to \infty \), almost every \(\Delta \)-regular graph \(G \) on \(n \) vertices has the property that \(E(K_n) \setminus E(G) \) cannot be partitioned into fewer than about \(\Delta^2 \frac{\log \Delta}{\log \log \Delta} - 1 \) cliques.

1 Introduction

A clique partition of a graph \(G \) is a collection of complete subgraphs of \(G \) (called cliques) that partition the edge set of \(G \). In this paper, we study the problem of finding clique partitions of \(K_n \setminus F \), where \(F \subset K_n \) is a forest or a graph of maximum degree \(\Delta \). Here \(K_n \setminus F \) refers to the graph on \(V(K_n) \) consisting of all edges of \(K_n \) which are not in \(F \), and is called the complement of \(F \). We denote by \(\text{cp}(K_n \setminus F) \) the clique partition number of \(K_n \setminus F \), which is the smallest number of cliques partitioning \(E(K_n) \setminus E(F) \). Any further notation not defined here is found in Bondy and Murty [6]. Gregory, McGuinness and Wallis [7] proved that the complement of a perfect matching on \(n \) vertices can be partitioned into \(O(n \log \log n) \) cliques. In the case that \(F \) is a forest, we prove the following theorem:

Theorem 1 Let \(F \subset K_n \) be a forest. Then \(\text{cp}(K_n \setminus F) = O(n \log n) \).
The proof of Theorem 1 will be given in Section 2. We are not aware of any lower bounds for \(\text{cp}(K_n \setminus F) \) which are not of order of magnitude \(O(n) \); we conjecture that there exist forests for which
\[
\text{cp}(K_n \setminus F) \rightarrow \infty.
\]

In the second part of the paper, we are interested in estimating clique partition numbers of very dense graphs – we wish to find bounds on \(\text{cp}(K_n \setminus G) \) when \(G \) has maximum degree \(\Delta \). An early result of Erdős and de Bruijn [4] shows that \(\text{cp}(K_n \setminus K_2) = n - 1 \) for \(n \geq 3 \), with equality only for clique partitions consisting of \(n - 2 \) complete graphs of order two and one complete graph of order \(n - 2 \). Using projective planes, Wallis [8] showed if \(H \) is a graph with at most \(\sqrt{n} \) vertices, then \(K_n \setminus H \) can be partitioned into \(O(n) \) cliques. A projective plane is a particular example of a family of sets called a Steiner system. We recall that a Steiner \((n, k)\)-system provides a clique partition of \(K_n \) into cliques of size \(k \); in particular \(\binom{n}{2}/\binom{k}{2} \) cliques are present in this partition. Conditional on the existence of Steiner systems with certain parameters, we give bounds on \(\text{cp}(K_n \setminus G) \) for graphs \(G \) with prescribed maximum degree \(\Delta(G) \):

Theorem 2 Let \(G \) be a graph on \(n \) vertices, let \(k = \lfloor (\frac{n}{\Delta})^{1/2} \rfloor \), and suppose there exists a Steiner \((n, k)\)-system. Then, provided that \(\Delta(G) = o(\frac{n}{\log n}) \) as \(n \) tends to infinity,
\[
\text{cp}(K_n \setminus G) = O(n^{1.5} \Delta(G)^{1.5} \log^2 n).
\]
Furthermore, if \(\frac{n - \Delta}{\log n} \rightarrow \infty \), then as \(n \rightarrow \infty \), almost every \(\Delta \)-regular graph \(G \) on \(n \) vertices has
\[
\text{cp}(K_n \setminus G) = \Omega(\Delta^{2\lfloor \frac{\log n}{\log 2\Delta} \rfloor - 1}).
\]

For the purpose of comparison, if \(\Delta = n^{1-\epsilon} \) in Theorem 2, then the upper bound for \(\text{cp}(K_n \setminus G) \) is of order \(n^{2-\frac{1}{2}\epsilon} \log^2 n \) whereas the lower bound is of order \(n^{2-2\epsilon} \). It would be interesting to determine whether either of these bounds is tight in order of magnitude. We conclude with the following conjecture:

Conjecture 3 Let \(G \) be a graph on \(n \) vertices with maximum degree \(\Delta \). Then \(\text{cp}(K_n \setminus G) = O(\Delta n \log n) \). Furthermore, if \(\Delta = o(n) \), then \(\text{cp}(K_n \setminus G) = o(n^2) \).

2 Complements of Forests

To prove Theorem 1, we will restrict our attention to trees and show \(\text{cp}(K_n \setminus T) = O(n \log n) \) for any tree \(T \) on \(n \) vertices. Theorem 1 follows from this statement, since every forest \(F \subset K_n \) is contained in a spanning tree \(T \subset K_n \), and
\[
\text{cp}(K_n \setminus F) \leq \text{cp}(K_n \setminus T) + n - 1.
\]
To prove the claim \(\text{cp}(K_n \setminus T) = O(n \log n) \), we make use of the following definition.
Let of every prime order, we can take results on the distribution of prime numbers \[2\], and the fact that there exists a projective plane smooth tree partition starting with the trivial tree partition, repeatedly take 2-smooth partitions of all trees of size more than done. Without loss of generality, suppose that for \(i = 1, 2, \ldots, r\). The following lemma, which is easily seen to be best possible, will be used to prove Theorem 1.

Definition 4 A tree partition of a graph \(G\) is a collection of subtrees \(\{T_1, T_2, \ldots, T_r\}\) of \(G\) such that every edge of \(G\) is in exactly one subtree:

\[
G = \bigcup_{i=1}^{r} T_i,
\]

and for all \(i \neq j\), \(|V(T_i) \cap V(T_j)| \leq 1\).

For a positive integer \(b\), we say a tree partition \(\{T_1, T_2, \ldots, T_r\}\) is \(b\)-smooth if for some \(k\), \(k \leq b|T_i| \leq bk\), for \(i = 1, 2, \ldots, r\). The following lemma, which is easily seen to be best possible, will be used to prove Theorem 1.

Lemma 5 Let \(T\) be a tree on \(n\) vertices and let \(2 \leq k \leq n\). Then there exists a 3-smooth tree partition of \(T\) into at most \(2n/k\) trees such that every tree in the partition has size at most \(k\).

Proof. Let \(T\) be a tree on \(n\) vertices. It is well known that there exists a 2-smooth tree-partition \(\{T_1, T_2\}\) of \(T\). To see this, take a tree partition \(\{T_1, T_2\}\) of \(T\) so that \(|V(T_1)| - |V(T_2)|\) is minimized, and assume \(T_1\) and \(T_2\) share vertex \(v\). If \(\frac{2}{3} \leq |T_i| \leq \frac{2n}{3}\), for \(i = 1, 2\), then we are done. Without loss of generality, suppose that \(|T_1| < \frac{2n}{3}\). As \(|V(T_1)| - |V(T_2)|\) is minimized, \(v\) is adjacent to at least two vertices of \(T_2\). Form a tree partition \(\{J_1, J_2\}\) of \(T_2\), such that \(J_1\) and \(J_2\) share vertex \(v\). Then

\[
\frac{2n}{3} + 1 < |T_1 \cup J_1| + |T_1 \cup J_2| < \frac{4n}{3} + 1.
\]

Then \(\{T_1 \cup J_1, J_2\}\) or \(\{T_1 \cup J_2, J_1\}\) is a 2-smooth tree partition of \(T\).

To finish the proof, we construct a 3-smooth tree partition of \(T\) into trees of size at most \(k\). Repeatedly take 2-smooth partitions of all trees of size more than \(k\) in the current tree-partition, starting with the trivial tree partition, \(\{T\}\). This procedure gives a tree partition of \(T\) all of whose trees have size at most \(k\) and at least \(k/3\), and average size at least \(k/2\) as required.

We now use Lemma 5 to prove Theorem 1.

Proof of Theorem 1. Define for \(n \in \mathbb{N}\):

\[
g(n) = \max\{\text{cp}(K_n \setminus T) : T \text{ is a tree on } n \text{ vertices}\}.
\]

Let \(T\) be a tree on \(n\) vertices such that \(g(n) = \text{cp}(K_n \setminus T)\). By Lemma 5, there exists a 3-smooth tree partition \(\{T_1, T_2, \ldots, T_r\}\) of \(T\) such that \(|T_i| \leq \sqrt{n}\) and \(r \leq 2\sqrt{n}\). Without loss of generality, suppose that for \(i = 2, 3, \ldots, r\),

\[
V(T_i) \cap \left(\bigcup_{j=1}^{i-1} V(T_j) \right) = \{v_i\}.
\]

Let \(t\) be the smallest integer such that \(t \geq 7\sqrt{n}\) and there is a projective plane of order \(t\). By results on the distribution of prime numbers \([2]\), and the fact that there exists a projective plane of every prime order, we can take \(t = 7\sqrt{n} + n^\theta\) for some \(\theta < \frac{1}{2}\) and choose a projective plane of
order \(t \). We identify the \(t^2 + t + 1 \) points of the projective plane with the vertices of a complete graph \(K_{t^2+t+1} \), and the blocks form a clique partition of this complete graph. We claim that we can embed the trees \(T_1, T_2, \ldots, T_r \) in the cliques \(B_1, B_2, \ldots, B_r \) in such a way that the union of these embedded trees is \(T \).

First identify the vertices of \(T_1 \) with points from an arbitrary block, say \(B_1 \), of the projective plane, where the vertex \(v_2 \) is identified with some point \(w_2 \), and all other vertices of \(T_1 \) are identified arbitrarily with points from \(B_1 \) \(\setminus \{w_2\} \). Suppose that for some \(i : 2 \leq i \leq r \), we have already identified the vertices of \(T_{i-1} \) with the points of \(B_{i-1} \), such that vertex \(v_i \) is identified with point \(w_i \) of some block \(B_j \), where \(j \leq i - 1 \). Pick a block \(B_i \) (different from \(B_1, B_2, \ldots, B_{i-1} \)) that contains the point \(w_i \). There exists such a block as there are \(t + 1 \geq 7\sqrt{n} \) blocks containing the point \(w_i \) (and at most \(r \leq 2\sqrt{n} \) blocks have been used). Identify the vertices of \(T_i \) with points from \(B_i \) such that \(v_i \) is identified with \(w_i \), and all other vertices of \(T_i \) are identified arbitrarily with points from \(B_i \setminus W \), where \(W \) is the set of points from \(B_1 \cup B_2 \cup \cdots \cup B_{i-1} \) that intersect with \(B_i \). Note that \(|W| < r \), as \(B_i \) intersects every other block in at most one point. This identification can be done, as each block has \(t + 1 \geq 7\sqrt{n} \) points, each tree has at most \(\lfloor \sqrt{n} \rfloor \) vertices, and removing at most \(r - 1 \leq 2\sqrt{n} \) points of block \(B_i \) leaves at least \(\sqrt{n} \) points which can be identified with \(T_i \). This defines the embedding of the tree \(T_i \) into \(B_i \) for \(i = 1, 2, \ldots, r \), and the union of the embedded trees is clearly \(T \).

Now delete points of the projective plane such that each block \(B_i \) has \(\lfloor \sqrt{n} \rfloor \) points. Then:

\[
g(n) \leq t^2 + t + 1 - r + \sum_{i=1}^{r} \text{cp}(K_{|B_i|} \setminus T_i)
\]

\[
= O(n) + \sum_{i=1}^{r} \text{cp}(K_{\lfloor \sqrt{n} \rfloor} \setminus T_i)
\]

\[
\leq O(n) + \sum_{i=1}^{r} g(\lfloor \sqrt{n} \rfloor)
\]

Defining \(c(x) = g(\lfloor x \rfloor) \) for \(x \in \mathbb{R} \) gives

\[
c(x) \leq O(x) + 2\sqrt{x} \cdot c(\sqrt{x}).
\]

Dividing through by \(x \) and setting \(z = \log_2 \log_2 x \), and \(h(z) = c(x)/x \) gives,

\[
h(z) \leq O(1) + 2 \cdot h(z - 1).
\]

So, \(h(z) = O(2^z) \), for \(x \) (and hence \(z \)) arbitrarily large. Hence, \(c(x) = O(x \log x) \) implying that \(g(n) = O(n \log n) \).

3 Dense Graphs

In this section, we prove Theorem 2 using Steiner systems (see Cameron and van Lint [5]) and the probabilistic method (see Alon and Spencer [1]).
Recall that the blocks of a Steiner (n, k)-system correspond to a clique partition of K_n into $\binom{n}{2}/\binom{k}{2}$ cliques of size k. Necessary existence conditions for the existence of an $S(n, k)$ are

$$n \equiv 1 \mod k - 1,$$

$$n(n - 1) \equiv 0 \mod k(k - 1).$$

Wilson’s theorem [3] says that the necessary conditions above for the existence of an $S(n, k)$ are sufficient for almost all $n \in \mathbb{N}$. However, the proofs presented by Wilson do not give an explicit constant $n_0(k)$ such that an $S(n, k)$ exists for all $n \geq n_0(k)$ satisfying the necessary conditions. Recently, Chang showed that $n_0(k) \leq \exp(\exp(k^2))$ (see page 800 in Beth, Jungnickel and Lenz [3]). It is therefore out of the reach of current research to determine for which $k \in \{1, 2, \ldots, n\}$ a Steiner (n, k)-system exists.

Proof of Theorem 2. Both the proofs of the upper and lower bounds in Theorem 2 are probabilistic. First we show that for almost every Δ-regular graph G on n vertices,

$$\text{cp}(K_n \setminus G) = \Omega(\Delta^2 [\log n/\log \Delta]^2 - 1^2).$$

Note that this statement is true whenever the right hand side is of order n, since $\text{cp}(K_n \setminus G) = \Omega(n)$ for every Δ-regular graph G. For this part of the proof, let $m = m(\Delta, n)$ be an integer such that as $n \to \infty$,

$$m = o(\Delta^2 [\log n/\log \Delta]^2 - 1^2).$$

Note that $\Delta^2 [\log n/\log \Delta]^2 - 1^2 \to \infty$ since $\frac{n - \Delta}{\log n} \to \infty$. For each clique partition C of a graph G on n vertices, let $B(G, C)$ be the bipartite graph with parts C and $V(G)$ such that $v \in V(G)$ is joined to $C \in C$ if $v \in C$. We observe that $B(G, C)$ has no cycles of length four and all vertices $C \in C$ have degree at least two. Therefore

$$\sum_{C \in \mathcal{C}} \left(\frac{d(C)}{2} \right) \leq \binom{n}{2}.$$

This implies that if $|C| = m$, then the number of edges in $B(G, C)$ is at most

$$\frac{m}{2} + m \left(\frac{1}{4} + \frac{n^2}{m} \right)^{\frac{1}{2}} < 2\sqrt{mn}$$

provided n is large enough.

Let $\beta(m, n, \Delta)$ be the total number of graphs $B(G, C)$ with $|C| = m$. Then

$$\log \beta(m, n, \Delta) \leq \log \sum_{k \leq 2\sqrt{mn}} \binom{mn}{k} = O(\sqrt{mn} \log m)$$

$$= o(\Delta n \log \Delta \cdot [\log n/\log \Delta - 1])$$

by definition of m. By the results on random regular graphs in Wormald [9], the logarithm of the number $\gamma(n, \Delta)$ of Δ-regular graphs on n vertices is at least

$$\log \gamma(n, \Delta) \geq \log \left(\frac{(\Delta n)!}{2^\Delta \Delta^n (\frac{\Delta n}{2})! (\Delta^n)^n} \cdot \exp[-\Omega(\Delta^2)] \right) = \Omega(\Delta n \log \frac{n}{\Delta})$$

$$= \Omega(\Delta n \log \Delta \cdot [\log n/\log \Delta - 1]).$$
We conclude that for any m as defined above, and since $n - \frac{\Delta}{\log n} \to \infty$,

$$\lim_{n \to \infty} \frac{\log \beta(m, n, \Delta)}{\log \gamma(n, \Delta)} = 0.$$

In particular, the proportion of Δ-regular graphs $G \subset K_n$ such that $\text{cp}(K_n \setminus G) = m$ tends to zero exponentially fast in n as $n \to \infty$. It follows that almost all Δ-regular graphs G on n vertices have

$$\text{cp}(K_n \setminus G) = \Omega(\Delta^2 \left[\frac{\log n}{\log \Delta} - 1 \right]^2).$$

This completes the first part of the proof.

Now we prove the upper bound on $\text{cp}(K_n \setminus G)$ given in Theorem 2. Suppose G, n, k satisfy the conditions of the theorem. Let $\mathcal{S} = (X, B)$ be a Steiner system with blocks of size k on n points. For a random permutation of the points, the probability that a fixed set of k points is a fixed block in \mathcal{B} is exactly $1/(\binom{n}{k})$. Take G to be a fixed graph on the same set of n points, with maximum degree Δ. Let G_B denote the subgraph of G spanned by the edges contained in a block $B \in \mathcal{B}$. Consider the event $|E(G_B)| \geq r$, for some integer r. Pick a subgraph H_B of G_B with exactly r edges. If the maximum size of a matching in H_B is i for some positive integer $i \leq r$, and if there are s vertices of H_B which are unsaturated by a maximum matching, then

$$\max \left\{ \frac{r - \left(\frac{2i}{2}\right)}{2i}, 0 \right\} \leq s \leq r - i.$$

For convenience, let $s_i = (r - \left(\frac{2i}{2}\right))/2i$. Let $A_B(i, s)$ denote the event that the largest matching in H_B has size i and H_B has $s + 2i$ vertices. Fixing a matching M of size i in G, there are at most $(2i)^s$ ways to choose a set S of s vertices so that $V(M) \cup S = H_B$. Then there are $(\begin{array}{c} n - 2i - s \\ k - 2i - s \end{array})$ ways to choose the vertices of $B \setminus V(H_B)$ from G. Therefore

$$\mathbb{P}[A_B(i, s)] \leq \frac{1}{\binom{n}{k}} \frac{\Delta^n}{i} (2i)^s \binom{n - 2i - s}{k - 2i - s}.$$

Since $\{|E(G_B)| \geq r\} \subset \bigcup_{i, s} A_B(i, s)$, it follows that

$$\mathbb{P}[|E(G_B)| \geq r] \leq \frac{1}{\binom{n}{k}} \sum_{i=1}^{r} \sum_{s \geq s_i} (\Delta^n)_i (2i)^s \binom{n - 2i - s}{k - 2i - s}.$$

To estimate the sums on the right, we use the inequality

$$\frac{\binom{n-i}{k-i}}{\binom{n}{k}} \leq \frac{b^i}{a^i}.$$

Let j be the largest integer such that

$$r - \left(\frac{2j}{2}\right) \geq 0$$
so that definitely $\sqrt{r/2} - 1 \leq j \leq \sqrt{r/2} + 1$. Recall $k = \lceil \sqrt{n/2\Delta} \rceil$. Then

$$
P[|E(G_B)| \geq r] \leq \sum_{i=1}^r \sum_{s \geq s_i, s \geq 0} \binom{n}{i} (2i\Delta)^s \binom{n-2i-s}{k-2i-s} \binom{n}{k}
$$

$$
< \sum_{i=1}^r \sum_{s \geq s_i, s \geq 0} (\Delta n)^i (2r\Delta)^s \frac{k^{2i+s}}{n^{2i+s}}
$$

$$
= \sum_{i=1}^r \binom{\Delta n^2}{n} \sum_{s \geq s_i, s \geq 0} \left(\frac{2rk\Delta}{n} \right)^s
$$

$$
\leq \sum_{i=1}^j \left(\frac{1}{2} \right)^i \sum_{s=s_i}^{r-i} \left(\frac{1}{2} \right)^s + \sum_{i=j+1}^r \left(\frac{1}{2} \right)^i \sum_{s=0}^{r-i} \left(\frac{1}{2} \right)^s
$$

$$
\leq 2 \sum_{i=1}^j \left(\frac{1}{2} \right)^i \left(\frac{1}{2} \right)^{s_i} + 4 \left(\frac{1}{2} \right)^{j+1}
$$

$$
= \sqrt{2} \sum_{i=1}^j \left(\frac{1}{2} \right)^{r/2i} + \left(\frac{1}{2} \right)^{j-1}
$$

$$
\leq \sqrt{2} j \left(\frac{1}{2} \right)^{Z/2j} + \left(\frac{1}{2} \right)^{j-1}.
$$

To justify (*), note that $\frac{2rk\Delta}{n} \leq \frac{1}{2}$ is true if we set $r = 2(\log_2(2n^2\Delta))^2$ and recall that

$$
\frac{\Delta (\log_2 n)^4}{n} \to 0.
$$

In addition, $\frac{\Delta n^2}{n} \leq \frac{1}{2}$ by our choice of k. These two statements verify (*). We show that the above expression is less than $\frac{1}{|B|}$. That is, we prove

$$
\left[\sqrt{2} j \left(\frac{1}{2} \right)^Z + \left(\frac{1}{2} \right)^{j-1} \right] \frac{n(n-1)}{k(k-1)} < 1.
$$

But, the left hand side of this is

$$
\left[\sqrt{2} j \left(\frac{1}{2} \right)^Z + \left(\frac{1}{2} \right)^{j-1} \right] \frac{n(n-1)}{k(k-1)} = O \left(\frac{jn^2}{k^2} \left(\frac{1}{2} \right)^Z \right)
$$

$$
= O \left(\Delta n \log_2(2n^2\Delta) \left(\frac{1}{2} \right)^{2\log_2(2n^2\Delta)+1} \right)
$$

$$
= O \left(\Delta n \log_2(2n^2\Delta) \left(\frac{1}{2} \right)^{\log_2(2n^2\Delta)} \right)
$$

$$
= O \left(\frac{\log_2(2n^2\Delta)}{n} \right)
$$

$$
= O(\log_2 n/n).
$$
So with positive probability $|E(G_B)| < r$ for all $B \in \mathcal{B}$, and
\[
\text{cp}(K_n \setminus G) < r|\mathcal{B}| = O(n^{3/2} \Delta^{1/2} \log^2 n),
\]
if n is sufficiently large. This completes the proof.

References

