Recurrence Equations

1 Fibonacci Numbers

A population of creatures starts off with one creature. The rule of growth of the population is this: immediately after two time steps, a creature gives birth to a new creature, and then gives birth to one creature immediately after every time step thereafter. The aim is to determine at \(n \) steps in time steps what the population is. If \(F_n \) is the population at time \(n \), then \(F_1 = 1 \), \(F_2 = 1 \), \(F_3 = 2 \), \(F_4 = 3 \) and we could in theory work out \(F_n \) for any value of \(n \). The numbers \(F_n \) are called Fibonacci Numbers. The table below shows the population at each time step of each generation up to time ten:

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td></td>
</tr>
<tr>
<td>1st Generation</td>
<td></td>
</tr>
<tr>
<td>2nd Generation</td>
<td></td>
</tr>
</tbody>
</table>

It is much more useful, however, to have a formula for \(F_n \). The first step in this direction is to note that

\[
F_n = F_{n-1} + F_{n-2}
\]

for all \(n > 2 \). This is true since every creature at time \(n = 2 \) gives birth to a new creature, whereas every creature at time \(n = 1 \) remains and does not give birth. So there are \(F_{n-2} \) new creatures and \(F_{n-1} \) creatures which do not give birth. If we repeat the formula, we get the nice formula

\[
F_n = F_{n-2} + F_{n-3} + \cdots + F_1
\]

for the population at time \(n \). Still this requires knowledge of \(F_{n-2}, F_{n-3}, \ldots, F_1 \). The main result on Fibonacci numbers is the following:

Theorem. Let \(\varphi = \frac{1}{2}(1 + \sqrt{5}) \) and \(\varphi = \frac{1}{2}(1 - \sqrt{5}) \). Then

\[
F_n = \left(\frac{1}{\sqrt{5}}\varphi^n - \frac{1}{\sqrt{5}}\overline{\varphi}^n\right).
\]

A function \(f(n) \) grows exponentially fast if there is a constant \(c > 1 \) such that \(f(n) > c^n \) for all \(n \). The Fibonacci Numbers, therefore, grow exponentially fast. In fact, \(F_n \) is the largest integer less than \(\frac{1}{\sqrt{5}}\varphi^n \), since \(\overline{\varphi}^n \) is extremely small if \(n \) is large.

2 Recurrence Equations

A recurrence equation for a sequence \((a_n)_{n \geq 1}\) is an equation in terms of \(a_n, a_{n-1}, \ldots, a_1 \). For example, \(a_n = a_{n-1} + a_{n-2} \) is a recurrence equation, and it defines the Fibonacci numbers. Other examples of recurrence equations are \(a_n = 2a_{n-1}, a_n = a_{n-1} + 1, a_n = a_{n-1} + 2a_{n-2} \) and \(a_n = n \sin(a_{n-1}) \). The general question here is how we solve such equations. First we need some initial conditions – these are prescriptions of the value of \(a_n \) for the first few
values of \(n \). For example, the equation \(a_n = 2a_{n-1} \) can’t be solved explicitly for \(n \geq 1 \) if we don’t know \(a_1 \). Let’s suppose \(a_1 = 2 \). Then \(a_2 = 4, a_3 = 8, a_4 = 16, \) and we can see the pattern giving \(a_n = 2^n \). However, in general it is not easy to see a pattern – for example \(a_n = n \sin(a_{n-1}) \) with \(a_1 = 1 \) does not have a nice pattern which allows us to guess the answer. So we need a general way to handle equations. We consider equations of the form

\[
a_n + \alpha a_{n-1} + \beta a_{n-2} = 0
\]

where \(\alpha, \beta \) are numbers, and we are given the values of \(a_1 \) and \(a_2 \) (the initial conditions). So the Fibonacci equation fits into this framework, with \(\alpha = \beta = -1 \) and \(a_1 = a_2 = 1 \). The main theorem for solving these equations is as follows. To state the theorem, we need the notion of the characteristic equation: the characteristic equation of the recurrence \(a_n + \alpha a_{n-1} + \beta a_{n-2} = 0 \) is the quadratic equation \(x^2 + \alpha x + \beta = 0 \).

Theorem. Let \(A \) and \(B \) be distinct roots of the equation \(x^2 + \alpha x + \beta = 0 \). Then the solution to the recurrence equation \(a_n + \alpha a_{n-1} + \beta a_{n-2} = 0 \) with initial conditions \(a_1 = a \) and \(a_2 = b \) is

\[
a_n = \left(\frac{b - aA}{B(A - B)} \right) A^n + \left(\frac{b - Ba}{A(A - B)} \right) B^n.
\]

It is not important to remember the numbers \(\frac{b - aA}{B(A - B)} \) and \(\frac{b - Ba}{A(A - B)} \), since these are found by knowing that the solution is \(a_n = cA^n + dB^n \) for some constants \(c \) and \(d \), and then solving for \(c \) and \(d \) using \(a_1 = a \) and \(a_2 = b \). For example, the Fibonacci equation \(a_n = a_{n-1} + a - n - 2 \) has characteristic equation \(x^2 - x - 1 = 0 \). Using the quadratic formula, we get

\[
A = \frac{1 + \sqrt{5}}{2} \quad \text{and} \quad B = \frac{1 - \sqrt{5}}{2}.
\]

Therefore we know \(a_n = cA^n + dB^n \) for some constants \(c \) and \(d \). Now since \(a_1 = 1 = a_2 \), we know

\[
1 = cA + dB \quad \text{and} \quad 1 = cA^2 + dB^2
\]

which gives us \(c = 1/\sqrt{5} \) and \(d = -1/\sqrt{5} \), agreeing with the theorem on Fibonacci numbers.

Here is another example. Consider the equation \(a_n = 3a_{n-1} - 2a_{n-2} \) with initial conditions \(a_1 = 3 \) and \(a_2 = 5 \). The characteristic equation is \(x^2 - 3x + 2 = 0 \), so the roots are \(A = 1 \) and \(B = 2 \). By the theorem

\[
a_n = c + d2^n.
\]

Since \(a_1 = 3 \) and \(a_2 = 5 \) we get \(c + 2d = 3 \) and \(c + 4d = 5 \), giving \(c = d = 1 \). So \(a_n = 2^n + 1 \).

Recurrence equations are one of the fundamental tools of mathematicians, and they appear everywhere in combinatorics. In some sense they are discrete analogs of differential equations. An example of a famous recurrence equation is the equation for Catalan numbers, which amongst other things count the number of binary trees with \(n \) vertices, the number of bracketings of an \(n \)-variable formula, the number of triangulations of a polygon with \(n \) sides, and the ballot problem for \(n \) voters. The Catalan numbers are given by the recurrence

\[
(n + 2)C_{n+1} = 2(2n + 1)C_n
\]

where \(C_2 = 2 \). You can check by direct substitution that \(C_n = \frac{1}{n+1} \binom{2n}{n} \) solves this equation, although we omit the method that gives this answer.