Notes on Modular Arithmetic

Let m and n be integers, where m is positive. Then, by the remainder formula, we can write $n = qm + r$ where $0 \leq r < m$ and q is an integer. Instead of writing $n = qm + r$ every time, we use the congruence notation: we say that n is congruent to r modulo m if $n = qm + r$ for some integer q, and denote this by

$$n \equiv r \pmod{m}.$$

If n is an integer, then

For any integers m and n, we write $n (\text{mod } m)$ to denote the remainder when n is divided by m.

Since the remainder is between zero and m, the set $\{n (\text{mod } m) : n \in \mathbb{Z}\}$ is exactly the same as $\{0, 1, 2, \ldots, m - 1\}$ — these are all possible remainders when n is divided by m. In this way, we introduce a new relation on the integers, namely congruence, which we denote by the symbol \equiv, this is the congruence or equivalence symbol. Two integers a and b are congruent modulo m, written $a \equiv b \pmod{m}$ if they have the same remainder when divided by m. For example, any two odd numbers are congruent modulo two, since the remainder when we divide them by two is 1. Note that $a \equiv b \pmod{m}$ is exactly the same as $a - b \equiv 0 \pmod{m}$. This last statement is the way to check whether a and b are congruent mod m: just check whether $a - b$ is divisible by m. When it is obvious what m is, we will sometimes just write $a \equiv b$ instead of $a \equiv b \pmod{m}$.

The \equiv symbol behaves very much like the $=$ symbol and the \leftrightarrow symbol. The three basic properties (modulo any number m) are:

1. $a \equiv a$
2. $a \equiv b \leftrightarrow b \equiv a$
3. $a \equiv b \land b \equiv c \rightarrow a \equiv c$.

All these properties can be checked directly from the definition of \equiv. For example, to check the last property, note that $a \equiv b \leftrightarrow a - b \equiv 0 \leftrightarrow a - b = qm$ for some integer q, and $b \equiv c \leftrightarrow b - c \equiv 0 \leftrightarrow b - c = rm$ for some integer r, so

$$a - c = (a - b) - (b - c) = (q - r)m$$

which means $a - c \equiv 0$ or $a \equiv c$, proving (3).

Many of the usual rules of arithmetic apply when dealing with congruences. For example, $a \equiv b$ implies $ac \equiv bc$ and $a \pm c \equiv b \pm c$ for any integer c — so we can multiply and add or subtract from both sides of a congruence. This allows us to introduce a new system of arithmetic on $\{0, 1, 2, \ldots, m - 1\}$ called modular arithmetic, and we denote this new system by \mathbb{Z}_m, the integers modulo m. We can imagine that the numbers $\{0, 1, 2, \ldots, m - 1\}$ are placed around a circle in increasing clockwise order, and then note that when we add numbers $a, b \in \{0, 1, 2, \ldots, m - 1\}$ in \mathbb{Z}_m, we imagine that we are starting at zero, and then moving $a + b$ steps around the circle, and this gives us $a + b \pmod{m}$. The same thing works for
multiplication: for example, $3a \pmod{m}$ (i.e. three times a in \mathbb{Z}_m) is obtained by starting at 0 and then moving $3a$ steps clockwise around the circle. Subtraction is obtained by moving counterclockwise around the circle. Of course, this is just a pictorial representation; if we really want to find something like $111 \cdot 222 \pmod{246}$ then we use long division to find the remainder when $111 \cdot 222$ is divided by 246.

Example. Find $111 \cdot 222 \pmod{246}$. Well, first multiply 111 by 222 as integers: we get $111 \cdot 222 = 24642$. Now we have to divide by 246. Well by long division $24642 = 246 \cdot 100 + 42$, so the remainder is 42 when we divide 24642 by 246. Therefore $111 \cdot 222 \pmod{246} = 42$.

We could also try negative numbers: find $-11 \pmod{17}$. Since these numbers are small, we could visualize it using the circle: start at zero and move 11 steps counterclockwise. We arrive at 6, so $11 \pmod{17} = 6$. Let’s check it by long division: we see that $11 = (-1) \cdot 17 + 6$, so the remainder when we divide 17 by -11 is 6, confirming our result.

Computing Large Congruences.

We can work out congruences using Fermat’s Theorem and/or a little bit of ingenuity. The main trick is often to replace parts of expressions mod m with simpler expressions. Let’s do some examples.

Examples. To work out $6^{16} \pmod{5}$ is really easy. Notice that $6^{16} \equiv 1^{16} \equiv 1 \pmod{5}$, so the answer is $6^{16} \equiv 1 \pmod{5}$ and we didn’t even use Fermat. We could have used Fermat: since $6^4 \equiv 1 \pmod{5}$, we know $6^{16} \equiv 6^{4 \cdot 4} \equiv (6^4)^4 \equiv 1^4 \equiv 1 \pmod{5}$. Let’s work out $39^{41} \pmod{11}$ using Fermat; it applies since 11 is prime. Fermat gives $39^{10} \equiv 1$. So

$$39^{41} \equiv 39^{4 \cdot 10 + 1} \equiv 39 \equiv 6 \pmod{11}.$$

How about $39^{41} \pmod{12}$? We cannot use Fermat since 12 is not prime. Fortunately $39 \equiv 3 \pmod{12}$ so

$$(39)^{41} \equiv (3)^{41} \equiv 9 \cdot (3^3)^{13} \equiv 9 \cdot 3^{13} \equiv 9 \cdot 3^4 \cdot 3 \equiv 3^7 \equiv (3^3)^2 \cdot 3 \equiv 9 \cdot 3 \equiv 3 \pmod{12}.$$

We repeatedly replaced 3^3 by 3 in this example, since 27 $\equiv 3 \pmod{12}$. What about $1115^{1111} \pmod{9}$? Since $1115 \equiv 8 \pmod{9}$, this is the same as $8^{1111} \pmod{9}$. Now $8^2 \equiv 1 \pmod{9}$ so we can repeatedly replace 8^2 with 1. We can do that 1110/2 = 555 times until we’re left with $1^{555} \cdot 8^1$. So $1115^{1111} \equiv 8 \pmod{9}$. A summary of what we just said is given below:

To find $a^b \pmod{m}$ when m is prime, replace a with the remainder when a is divided by m, and replace b with the remainder when b is divided by $m-1$.

If m is not prime, then to compute $a^b \pmod{m}$, look for powers of a that are congruent to s, something small, mod m, and repeatedly replace these powers with s.

Try the following on your own:

- $2^{81} \pmod{7}$
- $12^{81} \pmod{17}$
- $13^{13} \pmod{14}$
- $31^{41} \pmod{50}$
- $10^{10^{10}} \pmod{7}$
- $(-5)^{99} \pmod{8}$
Inverses

We have mentioned how multiplication, addition, and subtraction affect \equiv. But can we do division? In our usual arithmetic on rational numbers (i.e. fractions), the inverse of a fraction n is just $q = 1/n$, which is still a fraction. In other words, it is the fraction q such that $nq = 1$. In \mathbb{Z}_m, an inverse of a number n is a number q such that $nq \equiv 1 \pmod{m}$. But this no longer means that $q = 1/n$, since $1/n$ is not allowed in our set \{0,1,2,\ldots,m-1\}! So what is q, then? Let’s do some examples to see what q could be.

Example. Suppose we’re working in \mathbb{Z}_5. Zero has no inverse, because there is no number q such that $0 \cdot q \equiv 1$ (remember this would mean $1 - 0q = 1$ is divisible by 5, which is never true). The inverse of 1 is clearly 1, since $1 \cdot 1 \equiv 1$. The inverse of 2 is 3, since $2 \cdot 3 \equiv 1$. The inverse of 3 is 2, the inverse of 4 is 4, and so we’ve worked out the inverses of all numbers in \mathbb{Z}_5, apart from 0 which has no inverse. Let’s now try \mathbb{Z}_6. Zero has no inverse again, and the inverse of 1 is 1. What about 2? Well we can try all numbers in \{0,1,2,3,4,5\}, and none of them satisfies the definition of the inverse. So we say that 2 has no inverse. Similarly, 3 and 4 have no inverse. Now 5 has an inverse, namely 5, since $5 \cdot 5 = 25$ and $25 \equiv 1$.

We saw in the last example that some numbers in \mathbb{Z}_m have inverses, and some don’t. How can we tell? Definitely zero never has an inverse, and 1 is the inverse of 1, but what about 2,3,\ldots,m-1? The following theorem gives us a complete answer:

Theorem. Let n and $m > 1$ be positive integers. Then n has an inverse in \mathbb{Z}_m if and only if $\gcd(m,n) = 1$.

Numbers m and n such that $\gcd(m,n) = 1$ are called relatively prime numbers. So to check if n has an inverse modulo m, we just have to check whether m and n are relatively prime. Fortunately, we know how to do that using the Euclidean Algorithm. But first, let’s show why the theorem is true:

Proof. If $\gcd(m,n) = 1$, then by a previous theorem, there are integers α and β such that

$$1 = \alpha m + \beta n.$$

This means

$$1 \equiv \alpha m + \beta n \pmod{m}.$$

But $\alpha m \equiv 0$ modulo m, since αm is divisible by m, so we get $\beta n \equiv 1$ mod m. By definition, that means β is the inverse of n. It is an exercise to show that if n has an inverse, then $\gcd(m,n) = 1$.

If n has an inverse in \mathbb{Z}_m, then the inverse is unique, and we denote it by n^{-1}. For example, in \mathbb{Z}_5 we saw that $1^{-1} = 1$, $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$. Why can’t a number n have two inverses in \mathbb{Z}_m? Well, suppose for a contradiction that q and r are both inverses of n. Then $qn \equiv 1$ and $rn \equiv 1$. This means $(q - r)n \equiv 0$ in \mathbb{Z}_m, which means $m|(q - r)n$. But by the theorem, $\gcd(m,n) = 1$, so $m|(q - r)$. However q, r are elements of \mathbb{Z}_m, so they are in \{0,1,2,\ldots,m-1\}. The only way $q - r$ could be divisible by m is that $q - r = 0$, i.e. $q = r$. Therefore n has a unique inverse.
To find the inverse of \(n \) in \(\mathbb{Z}_m \), the steps to take are: first make sure \(\gcd(m, n) = 1 \) by performing the Euclidean Algorithm. Whenever we perform step (2) in the algorithm, say we're looking at \(\gcd(a, b) \) and \(b = aq + r \) where \(0 < r < a \), write out the working in full:

\[
\cdots = \gcd(a, b) = \gcd(a, b - aq) = \cdots
\]

At the end, if \(n \) has an inverse, we get \(\gcd(x, 1) \) for some \(x \), and since we always replace \(b \) by \(b - aq \) in step (2), we find the expression \(1 = mx + ny \), and the number \(y \) is the inverse of \(n \). We make this definite with an example:

Example. Find \(9^{-1} \) in \(\mathbb{Z}_{17} \). Well, we apply the above procedure: using the Euclidean Algorithm:

\[
\gcd(9, 17) = \gcd(9, (-1)17 + (2)9) = \gcd(9, 1) = 1.
\]

We deduce that \(1 = (-1)17 + (2)9 \) so \(\beta = 2 \) and \(9^{-1} = 2 \). If we check it, we indeed get \(9 \cdot 2 \equiv 1 \) in \(\mathbb{Z}_{17} \). Now let's find \(8^{-1} \) in \(\mathbb{Z}_{17} \).

\[
\gcd(8, 17) = \gcd(8, 17 - (2)8) = \gcd(8, 1) = 1.
\]

So \(1 = 17 - (2)8 \) which means \(8^{-1} \equiv -2 \mod 17 \). But we want the inverse in \(\mathbb{Z}_{17} \), so negative numbers are not allowed. We use \(-2 \equiv 15 \mod 17 \): so \(8^{-1} = 15 \) in \(\mathbb{Z}_{17} \). If we check it, \(8 \cdot 15 = 120 \) and since \(120 = 17 \cdot 7 + 1 \), we have \(8 \cdot 15 \equiv 1 \) in \(\mathbb{Z}_{17} \), as required.

Modular Equations.

- **Example.** Solve the equation \(2x + 3 \equiv -1 \mod 15 \). Well this is the same as \(2x \equiv -4 \mod 15 \) and since \(-4 \equiv 11 \mod 15 \) we get \(2x \equiv 11 \mod 15 \). Therefore \(x \equiv 2^{-1} \cdot 11 \mod 15 \), and it remains to work out \(2^{-1} \). Using the Euclidean Algorithm:

\[
\gcd(2, 15) = \gcd(2, 15 - 7 \cdot 2) = \gcd(2, 1) = 1,
\]

and therefore \(1 = 15 - 7 \cdot 2 \) and so \(2^{-1} \equiv -7 \mod 15 \). Now \(-7 \equiv 8 \mod 15 \), so \(2^{-1} = 8 \mod 15 \). This gives \(x \equiv 88 \equiv 3 \mod 15 \); in other words, the solution is \(x = 3 \).

- **Example.** Solve the equation \(121x \equiv 23 \mod 501 \). We have to work out \(121^{-1} \) – at this point, we don’t even know if it exists – we have to check that \(\gcd(121, 501) = 1 \).

\[
\gcd(121, 501) = \gcd(121, 501 - 4 \cdot (121)) = \gcd(121 - 7 \cdot (501 - 4 \cdot (121)), 501 - 4 \cdot (121)) = \gcd(3, 1).
\]

Therefore

\[
1 = 501 - 4 \cdot (121) - 5 \cdot (121 - 7 \cdot (501 - 4 \cdot (121))) = -37 \cdot (121) + 36 \cdot 501
\]

so \(121^{-1} \equiv -37 \equiv 464 \mod 501 \). Therefore

\[
x \equiv 121^{-1} \cdot 23 \equiv 464 \cdot 23 \mod 501
\]

and since \(464 \cdot 23 = 10672 \), \(x \equiv 10672 \mod 501 \). But \(10672 = 21 \cdot 501 + 151 \) using long division, so \(x = 151 \) is the final answer.